RockPI 4A单板Linux 4.4内核下的RK3399 GPIO功能解析

2024-06-06 19:20

本文主要是介绍RockPI 4A单板Linux 4.4内核下的RK3399 GPIO功能解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

RockPI 4A单板Linux 4.4内核下的RK3399 GPIO功能解析

摘要:本文将基于RockPI 4A单板,介绍Linux 4.4内核下RK3399 GPIO(通用输入输出)功能的使用方法。通过详细的代码解析和示例,帮助读者理解如何在Linux内核中使用GPIO,以及如何通过GPIO实现单板的基本控制和功能扩展。

  1. 引言

GPIO(通用输入输出)是嵌入式系统中的一个重要接口,用于实现对单板外设的控制和状态检测。在Linux内核中,GPIO通常由gpiochipgpio两个结构体来表示,其中gpiochip表示一个GPIO控制器,而gpio表示单个GPIO引脚。本文将基于RockPI 4A单板,介绍如何在Linux 4.4内核下使用RK3399 GPIO功能。

  1. RK3399 GPIO控制器简介

RK3399是Rockchip公司推出的一款高性能处理器,集成了丰富的外设和接口。在GPIO方面,RK3399提供了多达16个GPIO控制器,每个控制器可配置的GPIO引脚数量不等。本文将基于RockPI 4A单板,介绍其中一个GPIO控制器的基本配置和使用方法。

  1. GPIO控制器驱动配置

在Linux内核中,GPIO控制器驱动通常由gpiochip结构体来表示。为了使用RK3399的GPIO功能,首先需要配置GPIO控制器驱动。在RockPI 4A单板的Linux 4.4内核中,GPIO控制器驱动位于drivers/gpio/rockchip_gpio.c文件中。

3.1 配置GPIO控制器

rockchip_gpio.c文件中,定义了一个rockchip_gpio_chip结构体,用于表示RK3399的GPIO控制器。该结构体包含了GPIO控制器的基本信息,如GPIO引脚数量、方向控制寄存器地址等。在配置GPIO控制器时,需要根据实际单板配置修改这些信息。

3.2 注册GPIO控制器

在GPIO控制器配置完成后,需要将其注册到内核中。在rockchip_gpio.c文件中,定义了一个rockchip_gpio_chip结构体数组,用于表示多个GPIO控制器。在驱动初始化函数rockchip_gpio_init中,将GPIO控制器数组注册到内核中。

  1. GPIO引脚操作

在GPIO控制器注册完成后,可以使用GPIO引脚进行基本控制和功能扩展。在Linux内核中,GPIO引脚操作通常由gpio结构体来表示。

4.1 获取GPIO引脚

在使用GPIO引脚之前,需要先获取GPIO引脚。在rockchip_gpio.c文件中,定义了一个rockchip_gpio_get函数,用于获取GPIO引脚。该函数接收GPIO引脚编号作为参数,返回一个gpio结构体。

4.2 设置GPIO引脚方向

在获取GPIO引脚后,可以设置GPIO引脚的方向。在rockchip_gpio.c文件中,定义了一个rockchip_gpio_set_direction函数,用于设置GPIO引脚的方向。该函数接收GPIO引脚和方向作为参数,将GPIO引脚设置为输入或输出模式。

4.3 读取GPIO引脚状态

在设置GPIO引脚方向后,可以读取GPIO引脚的状态。在rockchip_gpio.c文件中,定义了一个rockchip_gpio_get_value函数,用于读取GPIO引脚的状态。该函数接收GPIO引脚作为参数,返回GPIO引脚的当前状态。

4.4 设置GPIO引脚值

在设置GPIO引脚方向为输出模式后,可以设置GPIO引脚的值。在rockchip_gpio.c文件中,定义了一个rockchip_gpio_set_value函数,用于设置GPIO引脚的值。该函数接收GPIO引脚和值作为参数,将GPIO引脚设置为高电平或低电平。

5.示例代码

为了更好地理解如何在Linux内核中使用RK3399的GPIO功能,下面是一个简单的示例代码,展示了如何通过GPIO控制LED灯的亮灭。

首先,在rockchip_gpio.c文件中,定义一个rockchip_gpio_chip结构体,用于表示RK3399的GPIO控制器,并注册该控制器到内核中。

#include <linux/module.h>
#include <linux/gpio/driver.h>
#include <linux/platform_device.h>
#include <linux/of.h>
#include <linux/of_gpio.h>// 定义GPIO控制器结构体
struct rockchip_gpio_chip rockchip_gpio_chip = {.label = "rockchip_gpio_chip",.ngpio = 16, // RK3399支持16个GPIO控制器,这里使用第一个控制器.parent = &rockchip_gpio_chip,.owner = THIS_MODULE,.of_node = NULL,.base = 0,.get_direction = rockchip_gpio_get_direction,.get_value = rockchip_gpio_get_value,.set_value = rockchip_gpio_set_value,.set_direction = rockchip_gpio_set_direction,
};// 注册GPIO控制器
static int rockchip_gpio_probe(struct platform_device *pdev)
{int ret = 0;struct gpio_chip *gc = &rockchip_gpio_chip;ret = gpiochip_add_data(gc, &rockchip_gpio_chip);if (ret) {pr_err("Failed to add GPIO chip\n");return ret;}return 0;
}static int rockchip_gpio_remove(struct platform_device *pdev)
{struct gpio_chip *gc = &rockchip_gpio_chip;gpiochip_remove(gc);return 0;
}static const struct of_device_id rockchip_gpio_of_match[] = {{ .compatible = "rockchip,rockchip-gpio" },{ }
};static struct platform_driver rockchip_gpio_driver = {.probe = rockchip_gpio_probe,.remove = rockchip_gpio_remove,.driver = {.name = "rockchip-gpio",.of_match_table = rockchip_gpio_of_match,},
};module_platform_driver(rockchip_gpio_driver);MODULE_LICENSE("GPL");
MODULE_AUTHOR("Your Name");
MODULE_DESCRIPTION("Rockchip GPIO driver");

接下来,在main.c文件中,定义一个简单的函数,用于通过GPIO控制LED灯的亮灭。

#include <linux/module.h>
#include <linux/gpio/driver.h>
#include <linux/of.h>
#include <linux/of_gpio.h>// 定义LED引脚编号
#define LED_GPIO 2 // 假设LED连接到GPIO编号为2的引脚// 定义LED控制函数
static int led_control(struct gpio_chip *gc, unsigned int offset, int value)
{// 获取LED引脚struct gpio_desc *gpio = gpiochip_get_desc(gc, offset);if (!gpio) {pr_err("Failed to get LED GPIO\n");return -ENODEV;}// 设置LED引脚值gpio_set_value(gpio, value);return 0;
}// 注册LED控制函数

这篇关于RockPI 4A单板Linux 4.4内核下的RK3399 GPIO功能解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1037008

相关文章

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

ElasticSearch+Kibana通过Docker部署到Linux服务器中操作方法

《ElasticSearch+Kibana通过Docker部署到Linux服务器中操作方法》本文介绍了Elasticsearch的基本概念,包括文档和字段、索引和映射,还详细描述了如何通过Docker... 目录1、ElasticSearch概念2、ElasticSearch、Kibana和IK分词器部署

Linux流媒体服务器部署流程

《Linux流媒体服务器部署流程》文章详细介绍了流媒体服务器的部署步骤,包括更新系统、安装依赖组件、编译安装Nginx和RTMP模块、配置Nginx和FFmpeg,以及测试流媒体服务器的搭建... 目录流媒体服务器部署部署安装1.更新系统2.安装依赖组件3.解压4.编译安装(添加RTMP和openssl模块

linux下多个硬盘划分到同一挂载点问题

《linux下多个硬盘划分到同一挂载点问题》在Linux系统中,将多个硬盘划分到同一挂载点需要通过逻辑卷管理(LVM)来实现,首先,需要将物理存储设备(如硬盘分区)创建为物理卷,然后,将这些物理卷组成... 目录linux下多个硬盘划分到同一挂载点需要明确的几个概念硬盘插上默认的是非lvm总结Linux下多

linux进程D状态的解决思路分享

《linux进程D状态的解决思路分享》在Linux系统中,进程在内核模式下等待I/O完成时会进入不间断睡眠状态(D状态),这种状态下,进程无法通过普通方式被杀死,本文通过实验模拟了这种状态,并分析了如... 目录1. 问题描述2. 问题分析3. 实验模拟3.1 使用losetup创建一个卷作为pv的磁盘3.

C语言中自动与强制转换全解析

《C语言中自动与强制转换全解析》在编写C程序时,类型转换是确保数据正确性和一致性的关键环节,无论是隐式转换还是显式转换,都各有特点和应用场景,本文将详细探讨C语言中的类型转换机制,帮助您更好地理解并在... 目录类型转换的重要性自动类型转换(隐式转换)强制类型转换(显式转换)常见错误与注意事项总结与建议类型

SpringBoot整合DeepSeek实现AI对话功能

《SpringBoot整合DeepSeek实现AI对话功能》本文介绍了如何在SpringBoot项目中整合DeepSeekAPI和本地私有化部署DeepSeekR1模型,通过SpringAI框架简化了... 目录Spring AI版本依赖整合DeepSeek API key整合本地化部署的DeepSeek

Python实现多路视频多窗口播放功能

《Python实现多路视频多窗口播放功能》这篇文章主要为大家详细介绍了Python实现多路视频多窗口播放功能的相关知识,文中的示例代码讲解详细,有需要的小伙伴可以跟随小编一起学习一下... 目录一、python实现多路视频播放功能二、代码实现三、打包代码实现总结一、python实现多路视频播放功能服务端开

MySQL 缓存机制与架构解析(最新推荐)

《MySQL缓存机制与架构解析(最新推荐)》本文详细介绍了MySQL的缓存机制和整体架构,包括一级缓存(InnoDBBufferPool)和二级缓存(QueryCache),文章还探讨了SQL... 目录一、mysql缓存机制概述二、MySQL整体架构三、SQL查询执行全流程四、MySQL 8.0为何移除查

在Rust中要用Struct和Enum组织数据的原因解析

《在Rust中要用Struct和Enum组织数据的原因解析》在Rust中,Struct和Enum是组织数据的核心工具,Struct用于将相关字段封装为单一实体,便于管理和扩展,Enum用于明确定义所有... 目录为什么在Rust中要用Struct和Enum组织数据?一、使用struct组织数据:将相关字段绑