【C++】左值与右值

2024-06-06 18:48
文章标签 c++ 右值 左值

本文主要是介绍【C++】左值与右值,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 左值与右值

到了代码的下一行,是否能通过单一变量访问到值。若访问不到,就是右值;否则就是左值。字面量一定是右值

#include <iostream>
using namespace std;#define func(x) __func(x, "func(" #x ")")void __func(int &x, const char *str) {cout << str << " is left value" << endl;return ;
}void __func(int &&x, const char *str) {cout << str << " is right value" << endl;return ;
}//之所以+重载不返回引用,而+=重载返回引用
//就是因为两个操作的结果值的类型不同
class A {
public ://因为+表达式的结果是右值A operator+(int x) {}// += 表达式的结果是左值A &operator+=(int x) {}
};int main() {func(1234);int x = 1234, y = 456;//到了下一行依然能通过x访问到x的值func(x);//x+y的结果是个临时匿名变量,所以到下一行的时候无法访问到该结果值,所以x+y返回值的类型是右值func(x + y);//x++值是x+1之前的值,到下一行无法通过x访问到x+1之前的值func(x++);//x+1以后的值,可以通过x访问到该值,所以++x的值是左值func(++x);//到了代码下一行无法通过单一变量访问到x+123的结果func(x + 123); //右值//到了代码下一行可以通过x访问到 x *= 2的结果func(x *= 2); //左func(y += 3); //左func(y * 3); //右return 0;
}

运行结果:
image-20210313160322553

2. 左值引用和右值引用

右值引用是绑定到右值上的引用,右值引用的定义形式是 int &&;左值引用的定义形式是int &

正确传递左值和右值的关系:

#include <iostream>
using namespace std;#define func(x) __func(x, "func(" #x ")")
#define func2(x) __func2(x, "func2(" #x ")")void __func2(int &x, const char *str) {cout << str << " is left value" << endl;return ;
}void __func2(int &&x, const char *str) {cout << str << " is right value" << endl;return ;
}void __func(int &x, const char *str) {cout << str << " is left value" << endl;func2(x);return ;
}
//int &&x是右值引用
void __func(int &&x, const char *str) {cout << str << " is right value" << endl;//func2(x); //x表现出的是左值特性//func2(move(x));//强制变成右值特性func2(forward<int &&>(x));//以右值引用的形式向下传递,x会保持右值引用的特性,可以理解为强制转换,但是比强制转换更强大,可以转换为某种类型的引用return ;
}//之所以+重载不返回引用,而+=重载返回引用
//就是因为两个操作的结果值的类型不同
class A {
public ://因为+表达式的结果是右值A operator+(int x) {}// += 表达式的结果是左值A &operator+=(int x) {}
};int main() {func(1234);int x = 1234, y = 456;//到了下一行依然能通过x访问到x的值func(x);//x+y的结果是个临时匿名变量,所以到下一行的时候无法访问到该结果值,所以x+y返回值的类型是右值func(x + y);//x++值是x+1之前的值,到下一行无法通过x访问到x+1之前的值func(x++);//x+1以后的值,可以通过x访问到该值,所以++x的值是左值func(++x);//到了代码下一行无法通过单一变量访问到x+123的结果func(x + 123); //右值//到了代码下一行可以通过x访问到 x *= 2的结果func(x *= 2); //左func(y += 3); //左func(y * 3); //右return 0;
}

运行结果:
image-20210313191612706
moveforward 函数为什么重要呢?本质原因是C++有重载,保证用正确的类型向下传递,保证可以调用到正确的函数重载形式。

forward 叫做 完美转发,比强制转换更厉害的是可以转换为某种类型的引用。

3. 引用绑定的顺序

#include <iostream>
using namespace std;void func1(int &x) {cout << __PRETTY_FUNCTION__ << "called" << endl;
}void func1(const int &x) {cout << __PRETTY_FUNCTION__ << "called" << endl;
}void func1(int &&x) {cout << __PRETTY_FUNCTION__ << "called" << endl;
}void func1(const int &&x) {cout << __PRETTY_FUNCTION__ << "called" << endl;
}int main() {int n;const int y = 123;func1(n); //func1(int &);func1(y); //func1(const int &)func1(123 + 456); //func1(int &&)return 0;
}

运行结果:
image-20210313200227802
const 类型的左值引用可以绑定所有数据类型:

#include <iostream>
using namespace std;/*void func1(int &x) {cout << __PRETTY_FUNCTION__ << "called" << endl;
}*/void func1(const int &x) {cout << __PRETTY_FUNCTION__ << "called" << endl;
}/*void func1(int &&x) {cout << __PRETTY_FUNCTION__ << "called" << endl;
}void func1(const int &&x) {cout << __PRETTY_FUNCTION__ << "called" << endl;
}*/int main() {int n;const int y = 123;func1(n); //func1(int &);func1(y); //func1(const int &)func1(123 + 456); //func1(int &&)return 0;
}

运行结果:
在这里插入图片描述
不能绑定到func(int &)是因为在func1(int &)中是可能修改该值的,常量值是不能绑定到int &的,但是func1(const int &)是不能修改的参数的,所以绑定到func1(const int &)是为了包含所有情况。绑定顺序就是优先绑定和自己类型匹配的引用,否则绑定到const类型的左值引用。

4. 移动构造

/*************************************************************************> File Name: move_ctor.cpp> Author: Maureen > Mail: Maureen@qq.com > Created Time: 二  1/11 16:17:49 2022************************************************************************/#include <iostream>
using namespace std;
//实现自己的vector
namespace maureen {
class vector {
public :vector(int n = 10) : __size(n), data(new int[n]) {cout << "default constructor" << endl;}vector(const vector &v) : __size(v.size()), data(new int[__size]) {cout << "deep copy constructor" << endl;for (int i = 0; i < size(); i++) ++data[i] = v[i];return ;}//合并两个动态数组vector operator+(const vector &v) {vector ret(v.size() + this->size());vector &now = *this;for (int i = 0; i < size(); i++) {ret[i] = now[i];}for (int i = size(); i< ret.size(); i++) {ret[i] = v[i - size()];}return ret;}int &operator[](int ind) const {return this->data[ind];}int size() const { return __size; }
private :int __size;int *data;
};
}//end of maureenostream &operator<<(ostream &out, const maureen::vector &v) {for (int i = 0; i < v.size(); i++) {out << v[i] << " ";}return out;
}int main() {maureen::vector v1, v2;for (int i = 0; i < v1.size(); i++) v1[i] = rand() % 100;for (int i = 0; i < v2.size(); i++) v2[i] = rand() % 100;maureen::vector v3(v1 + v2);cout << v1 << endl;cout << v2 << endl;cout << v3 << endl;return 0;
}

有返回值优化的运行结果:
image-20210313192938872
没有返回值优化的运行结果:
image-20210313194434931
maureen::vector v3(v1 + v2); 中的 v1+v2 会产生一个临时变量,但是却对这个临时变量做了拷贝,这没有必要,何不直接将临时变量的值拿过来。

所以就产生了一类特殊的构造函数: 移动构造

拷贝构造传入的是左值引用,所以在拷贝构造中,必须得做深拷贝;构造函数可以传左值引用,也可以传右值引用。

一旦调用了右值引用对象,说明传入的值是临时值,要不然不会绑定到右值引用上。这种情况下,就直接抢。这就是移动构造:

vector(vector &&v) : __size(v.size()), data(v.data) {v.data = nullptr; //因为有时候可能是在显式调用移动构造v.__size = 0;
}

移动构造就是传入右值引用的构造。

#include <iostream>
using namespace std;
//实现自己的vector
namespace maureen {
class vector {
public :vector(int n = 10) : __size(n), data(new int[n]) {cout << "default constructor" << endl;}vector(const vector &v) : __size(v.size()), data(new int[__size]) { //拷贝构造cout << "deep copy constructor" << endl;for (int i = 0; i < size(); i++) ++data[i] = v[i];return ;}vector(vector &&v) : __size(v.size()), data(v.data) { //移动构造cout << "move copy constructor" << endl;v.data = nullptr;v.__size = 0;}vector operator+(const vector &v) { //合并两个动态数组vector ret(v.size() + this->size());vector &now = *this;for (int i = 0; i < size(); i++) {ret[i] = now[i];}for (int i = size(); i< ret.size(); i++) {ret[i] = v[i - size()];}return ret;}int &operator[](int ind) const {return this->data[ind];}int size() const { return __size; }~vector() {if (data) delete[] data;data = nullptr;__size = 0;}
private :int __size;int *data;
};
}//end of maureenostream &operator<<(ostream &out, const maureen::vector &v) {for (int i = 0; i < v.size(); i++) {out << v[i] << " ";}return out;
}int main() {maureen::vector v1, v2;for (int i = 0; i < v1.size(); i++) v1[i] = rand() % 100;for (int i = 0; i < v2.size(); i++) v2[i] = rand() % 100;maureen::vector v3(v1 + v2);cout << v1 << endl;cout << v2 << endl;cout << v3 << endl;return 0;
}

去掉返回值优化后的结果:
image-20210313194740273
移动构造只是改变了指针的指向,而拷贝构造需要先创建一片存储区再将数据拷贝过来。

发现当前值是临时值的时候,就将它的资源抢过来。

C++因为引入左值引用和右值引用,重回巅峰。因为在有移动构造之前,STL效率不高,因为只要产生拷贝就是深拷贝,如 string,vector。

当拷贝构造是深拷贝时,就一定要配一个移动构造。

显式调用移动构造函数:

#include <iostream>
using namespace std;
//实现自己的vector
namespace maureen {
class vector {
public :vector(int n = 10) : __size(n), data(new int[n]) {cout << "default constructor" << endl;}vector(const vector &v) : __size(v.size()), data(new int[__size]) {cout << "deep copy constructor" << endl;for (int i = 0; i < size(); i++) ++data[i] = v[i];return ;}vector(vector &&v) : __size(v.size()), data(v.data) {cout << "move copy constructor" << endl;v.data = nullptr;v.__size = 0;}vector operator+(const vector &v) { //合并两个动态数组vector ret(v.size() + this->size());vector &now = *this;for (int i = 0; i < size(); i++) {ret[i] = now[i];}for (int i = size(); i< ret.size(); i++) {ret[i] = v[i - size()];}return ret;}int &operator[](int ind) const {return this->data[ind];}int size() const { return __size; }~vector() {if (data) delete[] data;data = nullptr;__size = 0;}
private :int __size;int *data;
};
}//end of maureenostream &operator<<(ostream &out, const maureen::vector &v) {for (int i = 0; i < v.size(); i++) {out << v[i] << " ";}return out;
}
int main() {maureen::vector v1, v2;for (int i = 0; i < v1.size(); i++) v1[i] = rand() % 100;for (int i = 0; i < v2.size(); i++) v2[i] = rand() % 100;maureen::vector v3(v1 + v2);cout << v1 << endl;cout << v2 << endl;cout << v3 << endl;maureen::vector v4(move(v1));//显式调用移动构造cout << v1 << endl;cout << v4 << endl;return 0;
}

去掉返回值优化的运行结果:
image-20210313194908978

这篇关于【C++】左值与右值的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1036934

相关文章

C++实现回文串判断的两种高效方法

《C++实现回文串判断的两种高效方法》文章介绍了两种判断回文串的方法:解法一通过创建新字符串来处理,解法二在原字符串上直接筛选判断,两种方法都使用了双指针法,文中通过代码示例讲解的非常详细,需要的朋友... 目录一、问题描述示例二、解法一:将字母数字连接到新的 string思路代码实现代码解释复杂度分析三、

C++一个数组赋值给另一个数组方式

《C++一个数组赋值给另一个数组方式》文章介绍了三种在C++中将一个数组赋值给另一个数组的方法:使用循环逐个元素赋值、使用标准库函数std::copy或std::memcpy以及使用标准库容器,每种方... 目录C++一个数组赋值给另一个数组循环遍历赋值使用标准库中的函数 std::copy 或 std::

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

c++中std::placeholders的使用方法

《c++中std::placeholders的使用方法》std::placeholders是C++标准库中的一个工具,用于在函数对象绑定时创建占位符,本文就来详细的介绍一下,具有一定的参考价值,感兴... 目录1. 基本概念2. 使用场景3. 示例示例 1:部分参数绑定示例 2:参数重排序4. 注意事项5.

使用C++将处理后的信号保存为PNG和TIFF格式

《使用C++将处理后的信号保存为PNG和TIFF格式》在信号处理领域,我们常常需要将处理结果以图像的形式保存下来,方便后续分析和展示,C++提供了多种库来处理图像数据,本文将介绍如何使用stb_ima... 目录1. PNG格式保存使用stb_imagephp_write库1.1 安装和包含库1.2 代码解

C++实现封装的顺序表的操作与实践

《C++实现封装的顺序表的操作与实践》在程序设计中,顺序表是一种常见的线性数据结构,通常用于存储具有固定顺序的元素,与链表不同,顺序表中的元素是连续存储的,因此访问速度较快,但插入和删除操作的效率可能... 目录一、顺序表的基本概念二、顺序表类的设计1. 顺序表类的成员变量2. 构造函数和析构函数三、顺序表

使用C++实现单链表的操作与实践

《使用C++实现单链表的操作与实践》在程序设计中,链表是一种常见的数据结构,特别是在动态数据管理、频繁插入和删除元素的场景中,链表相比于数组,具有更高的灵活性和高效性,尤其是在需要频繁修改数据结构的应... 目录一、单链表的基本概念二、单链表类的设计1. 节点的定义2. 链表的类定义三、单链表的操作实现四、