学习使用Opentelemetry python SDK

2024-06-06 16:20

本文主要是介绍学习使用Opentelemetry python SDK,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

📢博客主页:程序源⠀-CSDN博客
📢欢迎点赞👍收藏⭐留言📝如有错误敬请指正!

一、什么是 OpenTelemetry

OpenTelemetry 由 OpenTracing 和 OpenCensus 项目合并而成,是一组规范、工具、API 和 SDK 的集合。使用它来检测、生成、收集和导出遥测数据(Metrics、Logs 和 Traces),以帮助运维开发人员分析软件的性能和行为。为众多开发人员带来 Metrics、Traces、Logs 的统一标准,三者都有相同的元数据结构,可以轻松实现互相关联。

OpenTelemetry 是一个CNCF 孵化项目。OpenTelemetry 与厂商、平台无关,不提供与可观测性相关的后端服务。可根据用户需求将可观测类数据导出到存储、查询、可视化等不同后端,如 Prometheus、Jaeger 、云厂商服务中。

二、OpenTelemetry 诞生背景、主要特点和功能等相关介绍

参考如下文章:
http://t.csdnimg.cn/cKO5L

http://t.csdnimg.cn/SJK3k

三、使用Opentelemetry python SDK(以Windows为例)

3.1 环境准备

确保电脑上已经安装了Python

3.2 创建工程激活虚拟环境

在一个新目录中打开命令行

执行如下操作:
 

mkdir otel-getting-started
cd otel-getting-started
python3 -m venv venv
.\venv\Scripts\activate

3.3 安装框架和依赖

pip install flask

pip install opentelemetry-distre

opentelemetry-bootstrap-a install

 3.4 创建并启动HTTP服务器

 

目录下新建app.py文件(使用软件为PyCharm),编写代码如下:

from random import randint
from flask import Flask, request
import loggingapp = Flask(__name__)
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)@app.route("/rolldice")
def roll_dice():player = request.args.get('player', default=None, type=str)result = str(roll())if player:logger.warning("%s is rolling the dice: %s", player, result)else:logger.warning("Anonymous player is rolling the dice: %s", result)return resultdef roll():return randint(1, 6)

 在终端中打开目录,启动服务。

 设置环境变量

 $env:OTEL_PYTHON_LOGGING_AUTO_INSTRUMENTATION_ENABLED="true"

 设置 FLASK_APP 环境变量

 $env:FLASK_APP="app.py"

3.5 执行结果

执行如下代码

opentelemetry-instrument `--traces_exporter console `--metrics_exporter console `--logs_exporter console `--service_name dice-server `flask run -p 8080

访问对应的地址:http://127.0.0.1:8080/rolldice
显示如下:

最后会在控制台中看见span会打印出来

四、配置和运行本地 OpenTelemetry Collector

首先确保电脑上有安装Docker,我的Windows使用的是Docker Desktop

目录结构如下:

在venv目录下新建docker-compose.yal、Dockerfile、otel-collector-config.yaml以及requirements.txt文件

配置并运行本地收集器

otel-collector-config.yaml文件

receivers:otlp:protocols:grpc:endpoint: 0.0.0.0:4317http:endpoint: 0.0.0.0:4318
exporters:logging:logLevel: debug
processors:batch:
service:pipelines:traces:receivers: [otlp]exporters: [logging]processors: [batch]metrics:receivers: [otlp]exporters: [logging]processors: [batch]logs:receivers: [otlp]exporters: [logging]processors: [batch]

requirements.txt文件

Flask==2.2.3
opentelemetry-api==1.16.0
opentelemetry-sdk==1.16.0
opentelemetry-exporter-otlp==1.16.0
opentelemetry-instrumentation-flask==0.37b0
opentelemetry-semantic-conventions==0.37b0
Werkzeug==2.2.3
Jinja2==3.1.2
click==8.1.3
itsdangerous==2.1.2
importlib-metadata==4.8.3
Deprecated==1.2.13
typing-extensions==4.12.1

Dockerfile文件

# 使用 Python 官方镜像作为基础镜像
FROM python:3.9-slim# 设置工作目录
WORKDIR /app# 将 requirements.txt 复制到工作目录
COPY requirements.txt .# 安装 Python 依赖
RUN pip install --no-cache-dir -r requirements.txt# 将当前目录的内容复制到工作目录
COPY . .# 设置环境变量以启用自动化日志记录
ENV OTEL_PYTHON_LOGGING_AUTO_INSTRUMENTATION_ENABLED=true# 暴露应用运行的端口
EXPOSE 8080# 启动 Flask 应用
CMD ["opentelemetry-instrument", "--logs_exporter", "otlp", "flask", "run", "-p", "8080"]

安装 OTLP 导出程序包

pip install opentelemetry-exporter-otlp

运行应用程序

docker-compose up --build

由于我们配置了 logging 导出器,可以通过查看 OpenTelemetry Collector 容器的日志来检查跟踪和日志记录数据。

docker-compose logs otel-collector

这篇关于学习使用Opentelemetry python SDK的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1036616

相关文章

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

java图像识别工具类(ImageRecognitionUtils)使用实例详解

《java图像识别工具类(ImageRecognitionUtils)使用实例详解》:本文主要介绍如何在Java中使用OpenCV进行图像识别,包括图像加载、预处理、分类、人脸检测和特征提取等步骤... 目录前言1. 图像识别的背景与作用2. 设计目标3. 项目依赖4. 设计与实现 ImageRecogni

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Mysql虚拟列的使用场景

《Mysql虚拟列的使用场景》MySQL虚拟列是一种在查询时动态生成的特殊列,它不占用存储空间,可以提高查询效率和数据处理便利性,本文给大家介绍Mysql虚拟列的相关知识,感兴趣的朋友一起看看吧... 目录1. 介绍mysql虚拟列1.1 定义和作用1.2 虚拟列与普通列的区别2. MySQL虚拟列的类型2

Python进阶之Excel基本操作介绍

《Python进阶之Excel基本操作介绍》在现实中,很多工作都需要与数据打交道,Excel作为常用的数据处理工具,一直备受人们的青睐,本文主要为大家介绍了一些Python中Excel的基本操作,希望... 目录概述写入使用 xlwt使用 XlsxWriter读取修改概述在现实中,很多工作都需要与数据打交

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

mysql数据库分区的使用

《mysql数据库分区的使用》MySQL分区技术通过将大表分割成多个较小片段,提高查询性能、管理效率和数据存储效率,本文就来介绍一下mysql数据库分区的使用,感兴趣的可以了解一下... 目录【一】分区的基本概念【1】物理存储与逻辑分割【2】查询性能提升【3】数据管理与维护【4】扩展性与并行处理【二】分区的

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超