生命在于学习——Python人工智能原理(3.2)

2024-06-06 12:36

本文主要是介绍生命在于学习——Python人工智能原理(3.2),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

三、深度学习

(二)人工神经网络

人工神经网络是模仿人类大脑神经系统工作原理所创建的数学模型,有并行的分布处理能力、高容错性和自我学习等特征。

1、感知器

感知器由Frank Roseblatt于1957年提出,是一种广泛使用的线性分类器,感知器可谓是最简单的人工神经网络,只有一个神经元。
感知器是对生物神经元的简单数学模拟,有与生物神经元相对于的部件,如权重对应突触,偏置对应阈值,激活函数对应细胞体,输出为+1或-1。

2、神经网络模型

下图是神经网络的结构模型图,最左边的层是输入层,最右边的层是输出层,输入层和输出层之间的层叫做隐藏层,包含多个隐藏层的神经网络叫做深度神经网络。
对于拟合任何一个函数而言,浅层神经网络浅而宽,需要大量神经元,而深层神经网络深而窄,需要更多的层和较少的神经元。一般来说深层神经网络参数更少,更节省资源,但深层神经网络并不好训练,需要大量数据和很好的技巧才能训练出好的神经网络。
在这里插入图片描述

3、反向传播算法

学习规则可以用来修改神经网络的权重和偏置值,其目的是训练网络,更好的拟合特定任务的需求。常见的学习规则有Hebb学习规则、Delta算法及反向传播算法(BP)。
BP算法是人工神经网络较常采用的学习方法,其基本思想是逐一由样本集中的样本(Xk,Yk)计算出实际输出Ok和误差测度Ep,对w1,w2,…,wn权值做调整,重复这个循环,直到误差降至最低。
用输出层的误差调整输出层的权值矩阵,并因此误差估计输出层的直接前导误差,再用输出层直接前导层误差估计更前一层的误差,如此获得所有其他各层的误差估计,并用这些估计实现对权值矩阵的修改,形成将输出端出现的误差沿着与输入信号相反的方向逐级向输入端传递的链式求解过程。
BP算法学习过程应用到深度学习中分为两个子过程。输入数据正向传递子过程和误差数据方向传递子过程(正向传播求误差,反向传播求偏导)。
下面以三层神经网络为例,详细说明BP算法的原理及推导求解过程。

(1)正向传播求误差

网络分为三层,设输入层到隐藏层的权值为wji(0),隐藏层到输出层的权值为wji(1),权重和偏置的初始值一般根据实际情况采用随机值或经验值。输入层神经元个数为n,隐藏层神经元个数为m,输出层为1采用sigmod激活函数。
输入层的输入向量X(x1,x2,…,xn),隐藏层的输出向量H=(h1,h2,…,hm),有(式子1):
在这里插入图片描述
其中,netj(0)为未激活之前的神经网络计算输出,wji(0)为权值,bj(0)为节点hj的偏置值,f()为激活函数,θj(0)是阈值,用来改变神经元的活性,只有当神经元接收的信息达到阈值时才会被激活,同样,输出层向量O=(o1,o2,…,xl),有(式子2):
在这里插入图片描述

(2)反向传播求偏导

设d为期望输出,o为实际输出,E为损失函数(又称误差信号),则损失函数定义为(式子3):
在这里插入图片描述
dk是输出层第k个单元的期望输出,ok是输出层第k个单元的实际输出。将损失函数E展开到隐藏层,即把式子2带入到式子3中,可以得到(式子4):
在这里插入图片描述
再把损失函数E展开到输入层,即把式子1带入到式子4中,可以得到(式子5):
在这里插入图片描述
从式子5中可以看出,损失函数E是关于权值和偏置的函数,要使E最小,就要沿着梯度的反方向不断修改和调整权值和偏置。对于wkj(1)来说,可以选择任意初始点wki(1),从wki(1)沿着梯度下降的方向新进,所以取(式子6):
在这里插入图片描述
其中,η是学习率,取值0-1,可以用于避免陷入求解空间的局部最优值。同理可得(式子7):
在这里插入图片描述
对Δwki(1)和Δbk(1)进一步展开,可以得(式子8):
在这里插入图片描述
对隐藏层的Δwji(0)和Δbj(0)进一步展开,可以得(式子9):
在这里插入图片描述
对输出层和隐藏层各定义一个误差权值信号,令(式子10):
在这里插入图片描述
则(式子11)
在这里插入图片描述

(式子12)
在这里插入图片描述
ξko和ξjy又可以展开为(式子13):
在这里插入图片描述
由此,根据式子3,损失函数对o和h求偏导可得(式子14):
在这里插入图片描述
其中,由sigmod函数性质可知:
在这里插入图片描述
并将式子14带入式子13可得(式子15):
在这里插入图片描述
将式子15带入到式子11和式子12中,即可求得BP算法的权值和偏置更新计算公式。

这篇关于生命在于学习——Python人工智能原理(3.2)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1036127

相关文章

Python中的魔术方法__new__详解

《Python中的魔术方法__new__详解》:本文主要介绍Python中的魔术方法__new__的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、核心意义与机制1.1 构造过程原理1.2 与 __init__ 对比二、核心功能解析2.1 核心能力2.2

Python虚拟环境终极(含PyCharm的使用教程)

《Python虚拟环境终极(含PyCharm的使用教程)》:本文主要介绍Python虚拟环境终极(含PyCharm的使用教程),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录一、为什么需要虚拟环境?二、虚拟环境创建方式对比三、命令行创建虚拟环境(venv)3.1 基础命令3

Python Transformer 库安装配置及使用方法

《PythonTransformer库安装配置及使用方法》HuggingFaceTransformers是自然语言处理(NLP)领域最流行的开源库之一,支持基于Transformer架构的预训练模... 目录python 中的 Transformer 库及使用方法一、库的概述二、安装与配置三、基础使用:Pi

Python 中的 with open文件操作的最佳实践

《Python中的withopen文件操作的最佳实践》在Python中,withopen()提供了一个简洁而安全的方式来处理文件操作,它不仅能确保文件在操作完成后自动关闭,还能处理文件操作中的异... 目录什么是 with open()?为什么使用 with open()?使用 with open() 进行

Python中使用正则表达式精准匹配IP地址的案例

《Python中使用正则表达式精准匹配IP地址的案例》Python的正则表达式(re模块)是完成这个任务的利器,但你知道怎么写才能准确匹配各种合法的IP地址吗,今天我们就来详细探讨这个问题,感兴趣的朋... 目录为什么需要IP正则表达式?IP地址的基本结构基础正则表达式写法精确匹配0-255的数字验证IP地

使用Python实现全能手机虚拟键盘的示例代码

《使用Python实现全能手机虚拟键盘的示例代码》在数字化办公时代,你是否遇到过这样的场景:会议室投影电脑突然键盘失灵、躺在沙发上想远程控制书房电脑、或者需要给长辈远程协助操作?今天我要分享的Pyth... 目录一、项目概述:不止于键盘的远程控制方案1.1 创新价值1.2 技术栈全景二、需求实现步骤一、需求

Python 迭代器和生成器概念及场景分析

《Python迭代器和生成器概念及场景分析》yield是Python中实现惰性计算和协程的核心工具,结合send()、throw()、close()等方法,能够构建高效、灵活的数据流和控制流模型,这... 目录迭代器的介绍自定义迭代器省略的迭代器生产器的介绍yield的普通用法yield的高级用法yidle

使用Python将JSON,XML和YAML数据写入Excel文件

《使用Python将JSON,XML和YAML数据写入Excel文件》JSON、XML和YAML作为主流结构化数据格式,因其层次化表达能力和跨平台兼容性,已成为系统间数据交换的通用载体,本文将介绍如何... 目录如何使用python写入数据到Excel工作表用Python导入jsON数据到Excel工作表用

Go 语言中的select语句详解及工作原理

《Go语言中的select语句详解及工作原理》在Go语言中,select语句是用于处理多个通道(channel)操作的一种控制结构,它类似于switch语句,本文给大家介绍Go语言中的select语... 目录Go 语言中的 select 是做什么的基本功能语法工作原理示例示例 1:监听多个通道示例 2:带

鸿蒙中@State的原理使用详解(HarmonyOS 5)

《鸿蒙中@State的原理使用详解(HarmonyOS5)》@State是HarmonyOSArkTS框架中用于管理组件状态的核心装饰器,其核心作用是实现数据驱动UI的响应式编程模式,本文给大家介绍... 目录一、@State在鸿蒙中是做什么的?二、@Spythontate的基本原理1. 依赖关系的收集2.