MFTCoder论文被KDD 2024接收,开源v0.4.2版发布

2024-06-06 11:44

本文主要是介绍MFTCoder论文被KDD 2024接收,开源v0.4.2版发布,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. MFTCoder 简介

CodeFuse在2023年9月开源了一种多任务微调框架——MFTCoder,它可以实现在多个任务上同时并行地进行微调。通过结合多种损失函数,我们有效地解决了多任务学习中常见的任务间数据量不平衡、难易不一和收敛速度不一致等挑战。大量实验结果显示,相较于单独对单个任务进行微调或者多任务混合为一后进行微调,我们的多任务微调方法表现更优。此外,MFTCoder具备高效训练特征,包括提供高效的数据Tokenization模式,支持PEFT微调和全量微调,能有效提升微调训练速度并降低对资源的需求。MFTCoder是轻量的,简单清晰的,易于二次开发的,持续跟进Cutting-Edge技术的开源微调框架。

目前MFTCoder迭代到v0.4.2, 新增了对QLoRA + Deepspeed ZeRO3/FSDP的支持,可以使用更少的GPU,对更大模型(比如70B, 110B等)进行多任务微调

MFTCoder已适配支持了更多的主流开源LLMs,如Qwen2, Qwen2-moe, Gemma, Starcoder2, Mixtral、Mistral、Deepseek、 Llama、CodeLlama、Qwen、CodeGeeX2、StarCoder、Baichuan2、ChatGLM2/3、GPT-Neox等。

MFTCoder的详细介绍在我们之前的公众号文章中:干货!MFTCoder论文多任务微调技术详解

MFTCoder技术细节的论文已经被 KDD 2024 (ADS) 接收:https://arxiv.org/pdf/2311.02303.pdf

新升级代码也已经开源到GitHub:https://github.com/codefuse-ai/MFTCoder/tree/main/mftcoder_accelerate

2. v0.4.2新特性Hightlights

  • 首先,新版本已经适配到transformers v4.40.2,因此也支持了众多新的开源模型, 比如Qwen2,Qwen2-moe,Starcoder2, Gemma等新的主流开源模型;
  • 同时,MFTCoder当前适配新模型的成本很低,只需要对transformers进行适当的版本升级,并将对应模型添加到训练支持的池子即可,欢迎广大同学通过PR提交后续新模型的支持
  • 然后,MFTCoder-accelerate框架新增支持了QLoRA + Deepspeed ZeRO3/FSDP,可以使用更少的GPU,对更大模型(比如70B, 110B等)进行多任务微调MFT;
  • 最后,我们也同时用新的MFTCoder微调并开源了一个新的代码模型CodeFuse-StarCoder2-15B

3. MFTCoder提升Starcoder2-15b混合专家模型的代码能力实践

CodeFuse-StarCoder2-15B 模型地址:

魔搭:魔搭社区
HuggingFace: https://huggingface.co/codefuse-ai/CodeFuse-StarCoder2-15B

3.1. MFTCoder 多任务微调Starcoder2-15b

借助MFTCoder(v0.4.2)的多任务微调能力,我们可以使用多个代码任务数据集对Starcoder2-15b进行多任务微调(MFT)。在任务选择上,我们精选了4个核心代码任务数据,一共40w条指令问答数据。用基础任务微调对齐过的模型,在各类未训练过的代码任务上也有不错的泛化能力。

MFTCoder相应的关键配置如下:

{"lora_rank": 128,"lora_alpha": 32,"lora_dropout": 0.05,"targeting_modules": "all-linear","learning_rate": "0.0001","weight_decay": "0.01","lr_scheduler_type": "linear"
}

训练过程loss情况如下图所示:

通过多任务微调,CodeFuse-StarCoder2-15B的各方面代码能力均有比较大的提升。

3.2. CodeFuse-StarCoder2-15B模型效果

对Starcoder2-15b进行多代码任务微调后,CodeFuse-StarCoder2-15B在HumanEval-X数据集中五种语言的Pass@1评测结果对比如下(用Greedy解码统一测试)

Model

Python

JavaScript

Java

C++

Go

CodeFuse-StarCoder2-15B

73.2%

67.8%

69.5%

61.0%

56.7%

Starcoder2-15b(base)

46.3%

Starcoder2-15b-instruct

72.6%

可以看出, CodeFuse-StarCoder2-15B比Starcoder2-15b 在HumanEval-python的pass@1提高27%, 达到73.2%,比Starcoder2-15b-instruct高;并且在其它语言代码能力(HumanEval-X)均有明显提高。

联系我们

MFTCoder最新版本v0.4.2已经开源,感兴趣的同学可以用版本tag或者持续跟踪main分支,本文中提到的模型和数据集也在陆续开源中,如果您喜欢我们的工作,欢迎试用、指正错误和贡献代码,可以的话请给我们的项目增加Star以支持我们。

  • GitHub项目主页:GitHub - codefuse-ai/MFTCoder: High Accuracy and efficiency multi-task fine-tuning framework for Code LLMs. This work has been accepted by KDD 2024.
  • HuggingFace主页:https://huggingface.co/codefuse-ai
  • 魔搭社区主页:魔搭社区

这篇关于MFTCoder论文被KDD 2024接收,开源v0.4.2版发布的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1036020

相关文章

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

详解Spring Boot接收参数的19种方式

《详解SpringBoot接收参数的19种方式》SpringBoot提供了多种注解来接收不同类型的参数,本文给大家介绍SpringBoot接收参数的19种方式,感兴趣的朋友跟随小编一起看看吧... 目录SpringBoot接受参数相关@PathVariable注解@RequestHeader注解@Reque

Java如何接收并解析HL7协议数据

《Java如何接收并解析HL7协议数据》文章主要介绍了HL7协议及其在医疗行业中的应用,详细描述了如何配置环境、接收和解析数据,以及与前端进行交互的实现方法,文章还分享了使用7Edit工具进行调试的经... 目录一、前言二、正文1、环境配置2、数据接收:HL7Monitor3、数据解析:HL7Busines

SpringBoot中Get请求和POST请求接收参数示例详解

《SpringBoot中Get请求和POST请求接收参数示例详解》文章详细介绍了SpringBoot中Get请求和POST请求的参数接收方式,包括方法形参接收参数、实体类接收参数、HttpServle... 目录1、Get请求1.1 方法形参接收参数 这种方式一般适用参数比较少的情况,并且前后端参数名称必须

高效+灵活,万博智云全球发布AWS无代理跨云容灾方案!

摘要 近日,万博智云推出了基于AWS的无代理跨云容灾解决方案,并与拉丁美洲,中东,亚洲的合作伙伴面向全球开展了联合发布。这一方案以AWS应用环境为基础,将HyperBDR平台的高效、灵活和成本效益优势与无代理功能相结合,为全球企业带来实现了更便捷、经济的数据保护。 一、全球联合发布 9月2日,万博智云CEO Michael Wong在线上平台发布AWS无代理跨云容灾解决方案的阐述视频,介绍了

2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题

题库来源:安全生产模拟考试一点通公众号小程序 2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题是由安全生产模拟考试一点通提供,流动式起重机司机证模拟考试题库是根据流动式起重机司机最新版教材,流动式起重机司机大纲整理而成(含2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题参考答案和部分工种参考解析),掌握本资料和学校方法,考试容易。流动式起重机司机考试技

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

【专题】2024飞行汽车技术全景报告合集PDF分享(附原数据表)

原文链接: https://tecdat.cn/?p=37628 6月16日,小鹏汇天旅航者X2在北京大兴国际机场临空经济区完成首飞,这也是小鹏汇天的产品在京津冀地区进行的首次飞行。小鹏汇天方面还表示,公司准备量产,并计划今年四季度开启预售小鹏汇天分体式飞行汽车,探索分体式飞行汽车城际通勤。阅读原文,获取专题报告合集全文,解锁文末271份飞行汽车相关行业研究报告。 据悉,业内人士对飞行汽车行业

高效录音转文字:2024年四大工具精选!

在快节奏的工作生活中,能够快速将录音转换成文字是一项非常实用的能力。特别是在需要记录会议纪要、讲座内容或者是采访素材的时候,一款优秀的在线录音转文字工具能派上大用场。以下推荐几个好用的录音转文字工具! 365在线转文字 直达链接:https://www.pdf365.cn/ 365在线转文字是一款提供在线录音转文字服务的工具,它以其高效、便捷的特点受到用户的青睐。用户无需下载安装任何软件,只

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学