Direct3D Tutorial Win32 Sample 详解 - 6

2024-06-06 08:32

本文主要是介绍Direct3D Tutorial Win32 Sample 详解 - 6,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

实现效果
在tutorial 5的基础之上实现光照
在这里插入图片描述

不同光源及其属性

平行光
属性:方向,平行光不会随距离衰减
在这里插入图片描述

struct DirectionalLight
{DirectionalLight() { memset(this, 0, sizeof(DirectionalLight)); }DirectX::XMFLOAT4 Ambient;DirectX::XMFLOAT4 Diffuse;DirectX::XMFLOAT4 Specular;DirectX::XMFLOAT3 Direction;float Pad; // 最后用一个浮点数填充使得该结构体大小满足16的倍数,便于我们以后在HLSL设置数组
};

点光源
属性:光源位置,点光源根据光源位置确定方向;衰减系数,点光源随距离衰减;
在这里插入图片描述
在这里插入图片描述

struct PointLight
{PointLight() { memset(this, 0, sizeof(PointLight)); }DirectX::XMFLOAT4 Ambient;DirectX::XMFLOAT4 Diffuse;DirectX::XMFLOAT4 Specular;// 打包成4D向量: (Position, Range)DirectX::XMFLOAT3 Position;float Range;// 打包成4D向量: (A0, A1, A2, Pad)DirectX::XMFLOAT3 Att;float Pad; // 最后用一个浮点数填充使得该结构体大小满足16的倍数,便于我们以后在HLSL设置数组
};

聚光灯
聚光灯随距离衰减,且有圆锥形的照射面,由指数S控制在圆锥内的衰减的快慢。
在这里插入图片描述
在这里插入图片描述

struct SpotLight
{SpotLight() { memset(this, 0, sizeof(SpotLight)); }DirectX::XMFLOAT4 Ambient;DirectX::XMFLOAT4 Diffuse;DirectX::XMFLOAT4 Specular;// 打包成4D向量: (Position, Range)DirectX::XMFLOAT3 Position;float Range;// 打包成4D向量: (Direction, Spot)DirectX::XMFLOAT3 Direction;float Spot;// 打包成4D向量:  (A0, A1, A2, Pad)DirectX::XMFLOAT3 Att;float Pad; // 最后用一个浮点数填充使得该结构体大小满足16的倍数,便于我们以后在HLSL设置数组
};

总而言之,从资源耗费角度而言,平行光要求最低,点光其次,聚光灯最高。然后需要将上述数据通过常量缓冲输入到像素着色器中。
环境光计算 light la material ma
A=la⨂ma
漫反射计算公式
cd = kd · ld ⨂ md
镜面光计算公式
cs = ks·ls ⨂ ms
在这里插入图片描述

光照的计算

这是代码的核心部分,在HLSL中实现光照的计算。主要包括法线的变换,平行光、点光源、聚光灯光源的计算。
本例使用的光照很简单,只计算了平行光的漫反射,利用了兰伯特余弦定理,默认材质是反射所有光的。

    //do NdotL lighting for 2 lightsfor(int i=0; i<2; i++){finalColor += saturate( dot( (float3)vLightDir[i],input.Norm) * vLightColor[i] );}finalColor.a = 1;

总结:
在顶点信息中添加法线、材质信息,使用常量缓冲区添加光照信息,在着色器中实现光照的代码

贴一下平行光、点光源和聚光灯光照计算的完整代码

void ComputeDirectionalLight(Material mat, DirectionalLight L,float3 normal, float3 toEye,out float4 ambient,out float4 diffuse,out float4 spec)
{// 初始化输出ambient = float4(0.0f, 0.0f, 0.0f, 0.0f);diffuse = float4(0.0f, 0.0f, 0.0f, 0.0f);spec = float4(0.0f, 0.0f, 0.0f, 0.0f);// 光向量与照射方向相反float3 lightVec = -L.Direction;// 添加环境光ambient = mat.Ambient * L.Ambient;// 添加漫反射光和镜面光float diffuseFactor = dot(lightVec, normal);// 展开,避免动态分支[flatten]if (diffuseFactor > 0.0f){float3 v = reflect(-lightVec, normal);float specFactor = pow(max(dot(v, toEye), 0.0f), mat.Specular.w);diffuse = diffuseFactor * mat.Diffuse * L.Diffuse;spec = specFactor * mat.Specular * L.Specular;}
}void ComputePointLight(Material mat, PointLight L, float3 pos, float3 normal, float3 toEye,out float4 ambient, out float4 diffuse, out float4 spec)
{// 初始化输出ambient = float4(0.0f, 0.0f, 0.0f, 0.0f);diffuse = float4(0.0f, 0.0f, 0.0f, 0.0f);spec = float4(0.0f, 0.0f, 0.0f, 0.0f);// 从表面到光源的向量float3 lightVec = L.Position - pos;// 表面到光线的距离float d = length(lightVec);// 灯光范围测试if (d > L.Range)return;// 标准化光向量lightVec /= d;// 环境光计算ambient = mat.Ambient * L.Ambient;// 漫反射和镜面计算float diffuseFactor = dot(lightVec, normal);// 展开以避免动态分支[flatten]if (diffuseFactor > 0.0f){float3 v = reflect(-lightVec, normal);float specFactor = pow(max(dot(v, toEye), 0.0f), mat.Specular.w);diffuse = diffuseFactor * mat.Diffuse * L.Diffuse;spec = specFactor * mat.Specular * L.Specular;}// 光的衰弱float att = 1.0f / dot(L.Att, float3(1.0f, d, d * d));diffuse *= att;spec *= att;
}void ComputeSpotLight(Material mat, SpotLight L, float3 pos, float3 normal, float3 toEye,out float4 ambient, out float4 diffuse, out float4 spec)
{// 初始化输出ambient = float4(0.0f, 0.0f, 0.0f, 0.0f);diffuse = float4(0.0f, 0.0f, 0.0f, 0.0f);spec = float4(0.0f, 0.0f, 0.0f, 0.0f);// // 从表面到光源的向量float3 lightVec = L.Position - pos;// 表面到光源的距离float d = length(lightVec);// 范围测试if (d > L.Range)return;// 标准化光向量lightVec /= d;// 计算环境光部分ambient = mat.Ambient * L.Ambient;// 计算漫反射光和镜面反射光部分float diffuseFactor = dot(lightVec, normal);// 展开以避免动态分支[flatten]if (diffuseFactor > 0.0f){float3 v = reflect(-lightVec, normal);float specFactor = pow(max(dot(v, toEye), 0.0f), mat.Specular.w);diffuse = diffuseFactor * mat.Diffuse * L.Diffuse;spec = specFactor * mat.Specular * L.Specular;}// 计算汇聚因子和衰弱系数float spot = pow(max(dot(-lightVec, L.Direction), 0.0f), L.Spot);float att = spot / dot(L.Att, float3(1.0f, d, d * d));ambient *= spot;diffuse *= att;spec *= att;
}

这篇关于Direct3D Tutorial Win32 Sample 详解 - 6的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1035592

相关文章

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

MySQL的JDBC编程详解

《MySQL的JDBC编程详解》:本文主要介绍MySQL的JDBC编程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言一、前置知识1. 引入依赖2. 认识 url二、JDBC 操作流程1. JDBC 的写操作2. JDBC 的读操作总结前言本文介绍了mysq

Redis 的 SUBSCRIBE命令详解

《Redis的SUBSCRIBE命令详解》Redis的SUBSCRIBE命令用于订阅一个或多个频道,以便接收发送到这些频道的消息,本文给大家介绍Redis的SUBSCRIBE命令,感兴趣的朋友跟随... 目录基本语法工作原理示例消息格式相关命令python 示例Redis 的 SUBSCRIBE 命令用于订

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

SpringBoot日志级别与日志分组详解

《SpringBoot日志级别与日志分组详解》文章介绍了日志级别(ALL至OFF)及其作用,说明SpringBoot默认日志级别为INFO,可通过application.properties调整全局或... 目录日志级别1、级别内容2、调整日志级别调整默认日志级别调整指定类的日志级别项目开发过程中,利用日志

Java中的抽象类与abstract 关键字使用详解

《Java中的抽象类与abstract关键字使用详解》:本文主要介绍Java中的抽象类与abstract关键字使用详解,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、抽象类的概念二、使用 abstract2.1 修饰类 => 抽象类2.2 修饰方法 => 抽象方法,没有

MySQL8 密码强度评估与配置详解

《MySQL8密码强度评估与配置详解》MySQL8默认启用密码强度插件,实施MEDIUM策略(长度8、含数字/字母/特殊字符),支持动态调整与配置文件设置,推荐使用STRONG策略并定期更新密码以提... 目录一、mysql 8 密码强度评估机制1.核心插件:validate_password2.密码策略级

从入门到精通详解Python虚拟环境完全指南

《从入门到精通详解Python虚拟环境完全指南》Python虚拟环境是一个独立的Python运行环境,它允许你为不同的项目创建隔离的Python环境,下面小编就来和大家详细介绍一下吧... 目录什么是python虚拟环境一、使用venv创建和管理虚拟环境1.1 创建虚拟环境1.2 激活虚拟环境1.3 验证虚

详解python pycharm与cmd中制表符不一样

《详解pythonpycharm与cmd中制表符不一样》本文主要介绍了pythonpycharm与cmd中制表符不一样,这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽... 这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽度不同导致的。在PyChar