结构体+结构体内存对齐+结构体实现位段

2024-06-05 07:20

本文主要是介绍结构体+结构体内存对齐+结构体实现位段,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

结构体+内存对齐+实现位段

  • 一.结构体
    • 1.结构体的声明
    • 2.结构体变量成员访问操作符
    • 3.结构体传参
    • 4.匿名结构体
    • 5.结构的自引用
  • 二.结构体内存对齐
    • 1.对齐规则
    • 2.为什么存在内存对齐?
    • 3.修改默认对齐数
  • 三.结构体实现位段
    • 1.什么是位段
    • 2.位段的内存分配
    • 3.位段的跨平台问题
    • 4.位段的应用
    • 5.位段使用的注意事项

前言:

  1. 学习了数组后发现数组中的元素只能是相同类型的变量,那么有没有可以存放不同类型的变量呢?
  2. 结构体:一些值的集合,这些值称为成员变量,结构体的每个成员可以是不同类型的变量

一.结构体

1.结构体的声明

struct tag
{member-list;//结构体成员列表
}variable-list;//结构体变量列表

例如:描述一个人

struct Person {int age;//年龄char name[50];//姓名float height;//身高
};//封号不能丢

2.结构体变量成员访问操作符

  1. 结构体变量.结构体成员名。
  2. 结构体指针变量->结构体成员名。
#include <stdio.h>
struct Person
{int age;char name[50];float height;
}p1 = { 20,"zhangsan",185.5 }, * ps;//全局变量(*ps:结构体指针ps)int main()
{struct Person p2 = { 18,"lisi",173.2 };//局部变量struct Person p3 = { 19,"wangwu",180.8 };//局部变量ps = &p3;printf("%d %s %.1f\n", p1.age, p1.name, p1.height);//结构体成员访问操作符:.printf("%d %s %.1f\n", p2.age, p2.name, p2.height);printf("%d %s %.1f\n", (*ps).age, (*ps).name, (*ps).height);printf("%d %s %.1f\n", ps->age, ps->name, ps->height);//结构体成员访问操作符:->等价于先*再.return 0;
}

在这里插入图片描述

3.结构体传参

  1. 传结构体。
  2. 传结构体的地址。
#include <stdio.h>
struct Person
{int age;char name[50];float height;
};
void test1(struct Person p)//用结构体接收
{printf("%d %s %.1f\n", p.age, p.name, p.height);
}
void test2(struct Person* p)//用结构体指针接收
{printf("%d %s %.1f\n", p->age, p->name, p->height);
}
int main()
{struct Person p1 = { 20,"zhangsan",185.5 };test1(p1);//传结构体test2(&p1);//传结构体的地址return 0;
}

在这里插入图片描述

思考:我们发现二者都可以成功访问结构体成员,那二者有什么区别呢?

  1. 传递结构体时:其实函数内部创建了一个临时结构体变量存放传入的结构体,当结构体很大时会额外占用空间不划算。(本质上是值传递)。
  2. 传递结构体地址时:只需创建4个字节结构体指针变量,通过其来访问结构体成员,可以大大节省空间。(本质上是地址/指针传递)。
  3. 推荐传递结构体地址

在这里插入图片描述

4.匿名结构体

//匿名结构体类型 
struct//不完全声明,由于没有名字,无法在其之后创建变量
{int age;char name[50];float height;
}s1, s2;//在结构体声明的时候直接创建变量,不能在其之后创建变量了,只能使用一次
int main()
{struct s3;//error
}
  • 当只需使用一次可以使用(在声明结构体时,直接创建变量,不能在其之后创建变量了)。

思考:以下代码行不行

struct
{int age;char name[50];float height;
}s1;
struct
{int age;char name[50];float height;
}*ps;int main()
{	ps = &s1;//?return 0;
}
  • 答案:不行,看似一样,其实这两个结构体是不同类型的,只是成员变量相同的不同结构体类型,二者不兼容。(没有名字导致的问题)。

5.结构的自引用

比如:定义一个链表的节点

struct Node
{int data;//存放数据struct Node* next;//存放指针
};

二.结构体内存对齐

注意:面试时计算结构体的大小是一个热门的考点,一定要学会。

1.对齐规则

  1. 结构体的第一个成员对齐到和结构体变量起始位置偏移量为 0 的地址处。
    偏移量:该成员变量的地址距离结构体地址的字节数(计算偏移量的函数:offsetof)。
  2. 其他成员变量要对齐到某个数字(对齐数)的整数倍的地址处。
    对齐数 = 编译器默认的对齐数与该成员变量大小的较小值。
    在VS 中默认的对齐数值为 8 。
    Linux中gcc编译器没有默认对齐数,对齐数就是成员自身的大小。
  3. 结构体总大小为最大对齐数(结构体中每个成员变量都有⼀个对齐数,所有对齐数中最大的)的整数倍。
  4. 如果嵌套了结构体的情况,嵌套的结构体成员对齐到自己的成员中最大对齐数的整数倍处,结构体的整体大小就是所有最大对齐数(含嵌套结构体中成员的对齐数)的整数倍。

offsetof宏:计算结构体成员相较于结构体变量起始位置的偏移量,头文件stddef.h
在这里插入图片描述

例如:计算结构体大小的代码。

#include<stdio.h>
#include<stddef.h>
struct S1
{char c1;//自身大小1,默认对齐数8,对齐数1char c2;//自身大小1,默认对齐数8,对齐数1int n;//自身大小4,默认对齐数8,对齐数4
};
struct S2
{char c1;//自身大小1,默认对齐数8,对齐数1int n;//自身大小4,默认对齐数8,对齐数4char c2;//自身大小1,默认对齐数8,对齐数1
};
int main()
{printf("%zd\n", offsetof(struct S1, c1));//0printf("%zd\n", offsetof(struct S1, c2));//1printf("%zd\n", offsetof(struct S1, n));//4printf("%zd\n", sizeof(struct S1));//8printf("%zd\n", offsetof(struct S2, c1));//0printf("%zd\n", offsetof(struct S2, n));//4printf("%zd\n", offsetof(struct S2, c2));//8printf("%zd\n", sizeof(struct S2));//12return 0;
}

在这里插入图片描述

练习:

#include<stdio.h>
struct S1
{double d;//自身大小8,默认对齐数8,对齐数8char c;//自身大小1,默认对齐数8,对齐数1int i;//自身大小4,默认对齐数8,对齐数4
};
struct S2
{char c1;//自身大小1,默认对齐数8,对齐数1struct S1 s1;//自身大小16,默认对齐数8,对齐数8//如果嵌套了结构体的情况,嵌套的结构体成员对齐到《自己的成员中最大对齐数的整数倍处(d的对齐数的整数倍处)》,//结构体的整体大小就是所有最大对齐数(含嵌套结构体中成员的对齐数)的整数倍。double d;//自身大小8,默认对齐数8,对齐数8
};
int main()
{printf("%zd\n", sizeof(struct S1));//16printf("%zd\n", sizeof(struct S2));//32return 0;
}

在这里插入图片描述

2.为什么存在内存对齐?

在这里插入图片描述

在这里插入图片描述

  • 那在设计结构体的时候,我们既要满足对齐,又要节省空间,如何做到:
//例如: 
#include<stdio.h>
struct S1
{char c1;int i;char c2;
};
struct S2
{char c1;char c2;int i;
};
int main()
{printf("%zd\n", sizeof(struct S1));//12printf("%zd\n", sizeof(struct S2));//8//S1 和 S2 类型的成员⼀模⼀样,但是 S1 和 S2 所占空间的大小有了⼀些区别。return 0;
}

总结:让占用空间小的成员尽量集中在⼀起。

3.修改默认对齐数

  1. VS上默认对齐数为8。
  2. #pragma pack(一般为2^n) 这个预处理指令,可以改变编译器的默认对齐数。
  3. 例如#pragma pack(1),#pragma pack(2),#pragma pack(4)。
  4. #pragma pack() == #pragma pack(8)。
#include<stdio.h>
#pragma pack(1)//修改默认对齐数变成1
struct S
{char c1;//自身大小1,默认对齐数1,对齐数1int i;//自身大小4,默认对齐数1,对齐数1char c2;//自身大小1,默认对齐数1,对齐数1
};
#pragma pack()//将默认对齐数修改为8
int main()
{printf("%zd\n", sizeof(struct S));//6return 0;
}

三.结构体实现位段

  • 结构体有实现位段的功能。

1.什么是位段

位段的声明和结构是类似的,有两个不同:

  1. 位段的成员必须是 int、unsigned int 或 signed int ,在C99中位段成员的类型也可以选择其他类型。
  2. 位段的成员名后边有一个冒号和一个数字。
  3. 位段中的位:二进制的位。

位段与结构体语法上的区别,代码如下:

#include<stdio.h>
struct A//结构体
{int a;int b;int c;int d;
};
struct B//结构体实现位段
{int a : 2;//只给了两个比特位,意味着只能存放0,1,2,3,不能存放大于它们的值int b : 5;//同理int c : 10;int d : 30;
};
int main()
{printf("%zd\n", sizeof(struct A));//16个字节printf("%zd\n", sizeof(struct B));//8个字节//发现位段较于结构体节省了空间return 0;
}
  • 总结:位段相较于结构体节省了空间。

2.位段的内存分配

  1. 位段的成员可以是 int unsigned int signed int 或者是 char 等类型。
  2. 位段的空间上是按照需要以4个字节( int )或者1个字节( char )的方式来开辟的。
  3. 位段涉及很多不确定因素,位段是不跨平台的,注重可移植的程序应该避免使用位段。
#include<stdio.h>
struct S
{char a : 3;char b : 4;char c : 5;char d : 4;
};
int main()
{struct S s = { 0 };s.a = 10;s.b = 12;s.c = 3;s.d = 4;printf("%zd\n", sizeof(struct S));//3个字节return 0;
}

1.给定了空间后,在空间的内部是从左向右使用,还是从右向左使用,这个是不确定的。
 假设:从右向左使用。
2.当剩下的空间不足以存放下一个成员的时候,空间是浪费还是使用,这个是不确定的。
 假设:浪费。

在这里插入图片描述

在这里插入图片描述

3.位段的跨平台问题

  1. int位段被当成有符号数还是无符号数是不确定的。
  2. 位段中最大位的数目不能确定。(16位机器最大16(sizeof(int)==2),32位机器最大32(sizeof(int)==4),写成27,在16位机器会出问题)。
  3. 位段中的成员在内存中从左向右分配,还是从右向左分配,标准尚未定义。
  4. 当⼀个结构包含两个位段,第⼆个位段成员比较大,无法容纳于第⼀个位段剩余的位时,是舍弃剩余的位还是利用,这是不确定的。

总结:跟结构体相比,位段可以达到同样的效果,并且可以很好的节省空间,但是有跨平台的问题存在。

4.位段的应用

  • 下图是网络协议中,IP数据报的格式,我们可以看到其中很多的属性只需要几个bit位就能描述,这里使用位段,能够实现想要的效果,也节省了空间,这样网络传输的数据报大小也会较小⼀些,对网络的畅通是有帮助的。
    在这里插入图片描述
  1. 在网络中发送数据的时候,需要进行数据的封装,例如:加上源地址与目的地址。(计算机网络中的网络层协议——> IP协议)。
  2. 为了避免网络拥堵,相办法节省空间,使用的就是位段。

5.位段使用的注意事项

  1. 位段的几个成员共有同⼀个字节,这样有些成员的起始位置并不是某个字节的起始位置,那么这些位置处是没有地址的。内存中每个字节分配一个地址,一个字节内部的bit位是没有地址的。
  2. 所以不能对位段的成员使用&操作符,这样就不能使用 scanf 直接给位段的成员输⼊值,只能是先输⼊放在一个变量中,然后赋值给位段的成员。
#include<stdio.h>
struct A
{int _a : 2;int _b : 5;int _c : 10;int _d : 30;
};
int main()
{//这是错误的struct A sa = { 0 };scanf("%d", &sa._b); //正确的示范int b = 0;scanf("%d", &b);sa._b = b;return 0;
}

创作不易,如果能帮到你的话能赏个三连吗?感谢啦!!!

这篇关于结构体+结构体内存对齐+结构体实现位段的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1032424

相关文章

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

Android实现任意版本设置默认的锁屏壁纸和桌面壁纸(两张壁纸可不一致)

客户有些需求需要设置默认壁纸和锁屏壁纸  在默认情况下 这两个壁纸是相同的  如果需要默认的锁屏壁纸和桌面壁纸不一样 需要额外修改 Android13实现 替换默认桌面壁纸: 将图片文件替换frameworks/base/core/res/res/drawable-nodpi/default_wallpaper.*  (注意不能是bmp格式) 替换默认锁屏壁纸: 将图片资源放入vendo

usaco 1.3 Mixing Milk (结构体排序 qsort) and hdu 2020(sort)

到了这题学会了结构体排序 于是回去修改了 1.2 milking cows 的算法~ 结构体排序核心: 1.结构体定义 struct Milk{int price;int milks;}milk[5000]; 2.自定义的比较函数,若返回值为正,qsort 函数判定a>b ;为负,a<b;为0,a==b; int milkcmp(const void *va,c

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

Kubernetes PodSecurityPolicy:PSP能实现的5种主要安全策略

Kubernetes PodSecurityPolicy:PSP能实现的5种主要安全策略 1. 特权模式限制2. 宿主机资源隔离3. 用户和组管理4. 权限提升控制5. SELinux配置 💖The Begin💖点点关注,收藏不迷路💖 Kubernetes的PodSecurityPolicy(PSP)是一个关键的安全特性,它在Pod创建之前实施安全策略,确保P

工厂ERP管理系统实现源码(JAVA)

工厂进销存管理系统是一个集采购管理、仓库管理、生产管理和销售管理于一体的综合解决方案。该系统旨在帮助企业优化流程、提高效率、降低成本,并实时掌握各环节的运营状况。 在采购管理方面,系统能够处理采购订单、供应商管理和采购入库等流程,确保采购过程的透明和高效。仓库管理方面,实现库存的精准管理,包括入库、出库、盘点等操作,确保库存数据的准确性和实时性。 生产管理模块则涵盖了生产计划制定、物料需求计划、

C++——stack、queue的实现及deque的介绍

目录 1.stack与queue的实现 1.1stack的实现  1.2 queue的实现 2.重温vector、list、stack、queue的介绍 2.1 STL标准库中stack和queue的底层结构  3.deque的简单介绍 3.1为什么选择deque作为stack和queue的底层默认容器  3.2 STL中对stack与queue的模拟实现 ①stack模拟实现