商品最大价值-第13届蓝桥杯选拔赛Python真题精选

2024-06-05 01:52

本文主要是介绍商品最大价值-第13届蓝桥杯选拔赛Python真题精选,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

[导读]:超平老师的Scratch蓝桥杯真题解读系列在推出之后,受到了广大老师和家长的好评,非常感谢各位的认可和厚爱。作为回馈,超平老师计划推出《Python蓝桥杯真题解析100讲》,这是解读系列的第77讲。

商品最大价值,本题是2022年1月22日举办的第13届蓝桥杯青少组Python编程选拔赛真题编程部分第5题。小蓝桌子上摆放着一个容积为 m 的书包及n件不同的商品,且每件商品上都标有商品的体积和商品的价值,请编程计算出能装入书包的商品的最大价值。

先来看看题目的要求吧。

一.题目说明

编程实现:

小蓝桌子上摆放着一个容积为m的书包及n件不同的商品,且每件商品上都标有商品的体积和商品的价值。 

小蓝要满足以下要求挑选商品装入书包中

要求 1:挑选的商品总体积不超过书包的容积;

要求 2:挑选的商品商品总价值最大。

请你帮助小蓝计算出能装入书包的商品的最大价值。

输入描述:

第一行输入两个正整数m和n,m表示书包的容积,n表示商品的数量。两个正整数之间一个英文逗号隔开

第二行输入n个正整数表示商品的体积,正整数之间一个英文逗号隔开

第三行输入n个正整数表示商品的价值,正整数之间一个英文逗号隔开(商品价值的输入顺序对应商品体积输入顺序)

输出描述:

输出装入书包的商品的最大价值

样例输入:

11,3

2,6,4

1,5,2

样例输出:

7

二.思路分析

这是一道算法题,涉及的知识点包括循环、列表、枚举算法和动态规划等。

很显然,这是一个典型的01背包问题,它是计算机科学和操作研究中经典的优化问题之一。

它的名称来源于这样一个情景:你有一个背包和一组物品,每个物品有一定的重量和价值;你需要在不超过背包最大负载的情况下,挑选出某些物品装进背包以使这些物品的总价值最大化。

针对本问题,我们有如下两种解决方案:

  • 枚举算法

  • 动态规划

我们分别来讨论。

1. 枚举算法

先来说说枚举算法,它是最简单的解决方案,我们可以使用combinations()函数将所有的组合列举出来,并找出总体积小于n的组合,计算出它们的总价值,然后就可以找出最大价值了。

以题目中给出的数据为例,3件商品,一共有7种不同的组合,我们可以使用表格列出所有的组合情况。

只挑选一件商品的组合情况如图所示:

只挑选两件商品的组合情况如图所示:

图片

挑选三件商品的组合情况如图所示:

通过上面的3个表格,可以发现,有6种组合满足条件,其中挑选商品2+商品3组合的总价值7是最高的。

2. 动态规划

使用动态规划算法的要点有如下4个:

  • 定义DP数组

  • 初始化DP数组

  • 状态转移方程

  • 遍历顺序

1). 定义DP数组

01背包是一个线性动态规划问题,我们可以定义一个二维列表dp[i][j],表示将前i个物品装入容积为j的书包中,所能得到的最大价值。

以题目中的数据为例,一共有3件商品,总体积为11,对应的二维表格如图所示:

这里的行i表示要挑选的商品,列j表示书包的体积,而处在最右下角落的单元格dp[3][11],就是最终的答案。

需要注意的是,列的最大值是由书包容积m来决定的,并且是以最小整数单位1来递增的。

2). 初始化DP数组

为了方便计算,在上面的二维表格中,专门增加了i = 0的行、j = 0的列,前者表示没有挑选任何商品,后者表示容积为0。

因此,i = 0的行和j = 0的列,其最大价值均为0,如图:

图片

3). 状态转移方程

接下来,就是逐渐填表的过程,填写过程中,始终要牢记dp[i][j]的含义。

先从第一件商品开始,商品1的体积为2,价值为1。

单元格dp[1][1]表示将商品1装入体积为1的书包中的最大价值,很显然,由于1 < 2,说明无法装入,因此dp[1][1] = dp[0][1] = 0。

也就是说,如果无法装入商品1,那么它的值就和正上方的格子相同,如图所示:

再来看dp[1][2],它表示将商品1装入体积为2的书包中的最大价值,此时2 = 2,可以装入,因此dp[1][2] = 1。

以此类推,可以发现,对于商品1,只要书包体积 >= 2,都可以装入,其最大价值都是1,对应的dp表格如图所示:

图片

接下来,我们考虑第二件商品,商品2的体积为6,价值为5。

很显然,当书包体积小于6时,肯定是无法装入商品2,所以选择不装入,其值等于正上方的单元格,如图:

图片

dp[2][6]会出现什么情况呢?

由于商品2的体积6刚好等于书包的容积,说明可以装入,此时就面临两种选择:

  • 不装入

  • 装入

如果不装入,就相当于在书包体积为6的书包中只装入前1个商品,因此dp[2][6] = dp[1][6] = 1。

如果装入,那么先考虑装入商品2的价值5,同时还要考虑装入商品2后,书包的剩余体积在装入前1个商品的最大价值。

换言之,装入商品2,还要考虑是否会把之前装入的商品挤出来,因为容积有限嘛。在这种情况下,dp[2][6] = 5 + dp[1][6-6] = 5 + dp[1][0] = 5。

然后,在上述两种情况下,选择最大值,很显然,5是最大价值,即装入商品2,此时商品1被挤出来了。

这个计算过程,如图所示:

图片

也就是说,我们需要在不装入和装入中选择价值最大的情况。到这里基本上就可以找到规律了,如下:

dp[i][j] = max(  dp[i - 1][j],   dp[i - 1][j - v[i]] + p[i])其中:v[i]表示当前商品的体积p[i]表示当前商品的价值

根据这个状态转移方程,我们可以填充好整个表格,如图所示:

图片

最右下角的dp[3][11] = 7,就是最大价值了。

4). 遍历顺序

通过上面的分析,可以发现,在计算dp[i][j]时,需要考虑正上方和左上方的单元格,所以我们按照从上到下,从左到右的顺序,如图:

如此一来,咱们的4个核心要素都一一解决了。

思路有了,接下来,我们就进入具体的编程实现环节。

三.编程实现

根据上面的思路分析,我们使用两种方法来编写程序:

  • 枚举算法

  • 动态规划

1. 递归算法

根据前面的思路分析,我们编写代码如下:

图片

代码不多,说明两点:

1). 在获取m和n的时候,先使用了列表推导式,得到列表,然后使用解包赋值运算对m和n赋值;

2). 在计算体积和和商品和时,使用了列表推导式,得到一个列表,然后直接使用sum()函数求和,代码非常简洁;

2. 动态规划

根据前面的思路分析,编写代码如下:

图片

代码其实不多,说明三点:

1). 在定义dp二维数组的时候,结合了快速创建列表和列表推导式的编程技巧,此处的下划线_是一个变量名;

2). dp二维数组增加了i = 0的行和j = 0的列,实际计算是从dp[1][1]开始的;

3). 在获取商品i的体积和价值时,需要将i减去1,因为v和p两个列表的下标都是从0开始的。

至此,整个程序就全部完成了,你可以输入不同的数据来测试效果啦。

四.总结与思考

本题代码在12行左右,涉及到的知识点包括:

  • 循环语句;

  • 列表操作;

  • 枚举算法;

  • 动态规划算法;

  • 01背包问题;

作为本次测评的最后一题,虽然代码不多,但是难度较大。关键点是熟练掌握动态规划算法的思想和分析方法。

01背包是经典的动态规划问题,具体来说,它属于线性DP,其特点是每个状态通常只与前一个或几个状态相关,因此可以使用一维或二维数组来存储和计算状态。

解决线性DP问题的一般步骤包括定义状态、确定状态转移方程、设定初始条件和确定遍历顺序,然后通过循环计算最优解,从而求解问题。

理解动态规划算法最好的方法就是画出表格,一步一步分析,千万不要纠结于代码本身,一般来说,动态规划的代码都比较简短,写起来也很快。

超平老师给你留一道思考题,本题可以使用递归方法来实现吗,代码如何编写呢?

你还有什么好的想法和创意吗,也非常欢迎和超平老师分享探讨。

如果你觉得文章对你有帮助,别忘了点赞和转发,予人玫瑰,手有余香😄

需要源码的,可以移步至“超平的编程课”gzh。

这篇关于商品最大价值-第13届蓝桥杯选拔赛Python真题精选的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1031745

相关文章

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

Python中win32包的安装及常见用途介绍

《Python中win32包的安装及常见用途介绍》在Windows环境下,PythonWin32模块通常随Python安装包一起安装,:本文主要介绍Python中win32包的安装及常见用途的相关... 目录前言主要组件安装方法常见用途1. 操作Windows注册表2. 操作Windows服务3. 窗口操作

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

python常用的正则表达式及作用

《python常用的正则表达式及作用》正则表达式是处理字符串的强大工具,Python通过re模块提供正则表达式支持,本文给大家介绍python常用的正则表达式及作用详解,感兴趣的朋友跟随小编一起看看吧... 目录python常用正则表达式及作用基本匹配模式常用正则表达式示例常用量词边界匹配分组和捕获常用re

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

python删除xml中的w:ascii属性的步骤

《python删除xml中的w:ascii属性的步骤》使用xml.etree.ElementTree删除WordXML中w:ascii属性,需注册命名空间并定位rFonts元素,通过del操作删除属... 可以使用python的XML.etree.ElementTree模块通过以下步骤删除XML中的w:as

使用Python绘制3D堆叠条形图全解析

《使用Python绘制3D堆叠条形图全解析》在数据可视化的工具箱里,3D图表总能带来眼前一亮的效果,本文就来和大家聊聊如何使用Python实现绘制3D堆叠条形图,感兴趣的小伙伴可以了解下... 目录为什么选择 3D 堆叠条形图代码实现:从数据到 3D 世界的搭建核心代码逐行解析细节优化应用场景:3D 堆叠图