Redisson 分布式锁 - RLock、RReadWriteLock、RSemaphore、RCountDownLatch(配置、使用、原理)

本文主要是介绍Redisson 分布式锁 - RLock、RReadWriteLock、RSemaphore、RCountDownLatch(配置、使用、原理),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

前言

Redisson 分布式锁

环境配置

1)版本说明

2)依赖如下

3)配置文件如下

4)项目配置

RLock

1)使用方式

2)加锁解释

3)加锁时手动设置时间

4)加锁时,到底要不要手动设置过期时间?(最佳实践)

RReadWriteLock

1)使用方式

2)加锁原理

RSemaphore

1)使用方式

2)信号原理

RCountDownLatch

1)使用方式

2)原理解释


前言


前面讲过一篇 Redisson 分布式锁的底层原理,而这篇文章着重实战,因此对原理不清楚的,可以看看我之前的文章:http://t.csdnimg.cn/LU5ED

 

Redisson 分布式锁


环境配置

1)版本说明

  • SpringBoot:3.2.5
  • Redisson:3.25.0

 

2)依赖如下

<!--        <dependency>-->
<!--            <groupId>org.springframework.boot</groupId>-->
<!--            <artifactId>spring-boot-starter-data-redis</artifactId>-->
<!--        </dependency>--><!--redisson 依赖整合了 StringRedisTemplate,因此 data redis 依赖就可以删除了--><dependency><groupId>org.redisson</groupId><artifactId>redisson-spring-boot-starter</artifactId><version>3.25.0</version></dependency>

 

3)配置文件如下

spring:  data:redis:host: env-baseport: 6379

Ps:实际上还有一种配置方式就是自己配置 RedissonClient 的 Bean,注入给容器

 

4)项目配置

分布式锁带来的效果演示,会通过 jmeter 来进行测试.  服务这边会先通过 网关,在负载均衡到集群的实例上.  因此这里我们来配置一下集群的每个实例信息.

这里为了方便观察,准备了两个实例:

RLock

1)使用方式

如果使用的 Redisson 的 Boot Starter 依赖的话,只需要在 yml 按照本文配置,然后在需要的地方注入 RedissionClient 即可使用(非 Boot Starter 依赖需要自己配置 RedissonClient).

@RestController 
@RequestMapping("/product/lock")
class Test(private val redisson: RedissonClient
) {@GetMapping("/test1")fun test1(): String {//1.获取一把锁,只要名字一样,就是同一把锁val lock: RLock = redisson.getLock("my-lock")//2.加锁lock.lock()try {println("加锁成功,执行业务..." + Thread.currentThread().id)Thread.sleep(10000) //模拟耗时任务} catch (e: Exception) {e.printStackTrace()} finally {//3.解锁lock.unlock()println("解锁成功!" + Thread.currentThread().id)}return  "ok!"}}

 Ps:除此之外,还有 redisson 的 ReentrantLock 中还提供了 tryLock() 方法有以下两种重载方式

  • boolean tryLock():尝试加锁,如果当前锁被占用,则直接放弃并返回 false.
  • boolean tryLock(long time, TimeUnit unit):如果当前锁被占用,则会等待,知道到达我们设置的过期时间 time 还没拿到锁,就放弃并返回 false.

 

2)加锁解释

a)RLock 就类似于 JUC 中的 ReentrantLock,是一个可重入锁(同一个线程对同一个资源连续加锁两次不会死锁).

b)加锁实际上就是在 redis 上添加了一个 key-value,并且默认加锁的过期时间为 30s,如下图:

c)如果业务处理实践比默认加锁时间长怎么办?这里会有一个看门狗机制,只要拿到锁,就会开启一个定时任务,每隔 10s 就会自动续约.  因此不用担心业务时间长的问题.  

d)如果代码还没有执行到解锁,程序就挂了,会不会死锁?不会的,锁是有默认的过期时间,即使没有执行到解锁逻辑,锁也会自动删除.(这里我自己测试了一下,貌似新版的 Redisson 中会检测程序是否挂了,如果挂了,就会把这个锁立即删除掉)

3)加锁时手动设置时间

a)使用如下:

b)注意:

如果我们手动指定了过期时间,那么即使业务没有执行完,也不会自动续约.  也就是说,无论如何,到期自动解锁.

4)加锁时,到底要不要手动设置过期时间?(最佳实践)

a)最佳实践:

使用 lock.lock(30, TimeUnit.SECONDS) 手动设置 30s 过期时间.  

b)原因:

如果我们手动设置过期时间,就省掉了续约的操作(有一定的开销).

再者,真的会有某一个业务逻辑需要执行 30s 的时间么?如果真的有,这个程序大概率是出问题了.  到了 30s 后解锁,反而还避免了 “死等” 问题.

RReadWriteLock

1)使用方式

a)写操作(写锁)

    @GetMapping("/write")fun write(): String {val rwLock: RReadWriteLock = redisson.getReadWriteLock("rw-lock")var result = ""//1.获取写锁val wLock = rwLock.writeLock()//2.写操作用写锁,读操作用读锁wLock.lock()try {Thread.sleep(10000)result = UUID.randomUUID().toString()redisTemplate.opsForValue().set("uuid", result)} catch (e: Exception) {e.printStackTrace()} finally {wLock.unlock()}return "ok! uuid: $result"}

b)读操作(读锁)

    @GetMapping("/read")fun read(): String {val rwLock: RReadWriteLock = redisson.getReadWriteLock("rw-lock")var result: String? = ""//1.获取读锁val rLock = rwLock.writeLock()//2.写操作用写锁,读操作用读锁rLock.lock()try {result = redisTemplate.opsForValue().get("uuid")} catch (e: Exception) {e.printStackTrace()} finally {rLock.unlock()}return "ok! uuid: $result"}

Ps:读锁,写锁 这里也额外提供了 tryLock() 方法,来尝试加锁(原理上面讲过)

2)加锁原理

读写锁保证了读操作和读操作之间不会加锁,而读操作和其他任何操作都会加锁.   使得在读多写少的业务场景中,效率大大提升.

Redission 提供的 ReadWriteLock 也是这个原理:

  • 读 + 读: 读操作和读操作之间不会出现脏数据问题,因此相当于无锁,只会在 redis 中记录当前读锁,他们都会同时加锁成功.
  • 写 + 读:如果先写,此时紧接着又进行读操作,可能出现脏数据的问题,因此会阻塞等待写锁释放.
  • 写 + 写:写操作和写操作之间可能出现脏数据问题,因此也是阻塞等待.
  • 读 + 写:由于你读的时候,另一个线程又来写,也会出现脏数据的问题,因此也必须要阻塞等待读锁释放.

RSemaphore

1)使用方式

    @GetMapping("/park")fun park(): String {//这里的 RSemaphore 就相当于是一个停车场,刚开始的没有车位(初始信号量为 0)val park: RSemaphore = redisson.getSemaphore("park")//1.获取一个信号,相当于占了一个停车位,车位 - 1park.acquire()//2.执行业务//...return "park ok!"}@GetMapping("/go")fun go(): String {val park = redisson.getSemaphore("park")//1.释放一个信号,相当于让出了一个车位,车位 + 1park.release()return "go ok!"}

Ps:这里也有一个额外的方法 tryAcquire(),尝试申请资源 

2)信号原理

a)redisson.getSemaphore("park") 这里实际上就是在 redis 上添加一个 key-value,key 就是我们自定义的 "park" 字符串,value 就是信号量,初始情况下为 0. 

b)情况分析:

情况一:刚开始的时候如果 线程A 进行 acquire(),由于信号量为 0,只能阻塞等待.  接着如果有 线程B 进行 release(),就会释放一个信号量,也就是信号量 + 1,此时 线程A 发现有一个信号来了,他就直接消费掉了

情况二:刚开始的时候如果 线程A 进行 release(),此时信号量 + 1,总共信号量为 1,接着如果有线程B 来进行 acquire() ,就会直接消费掉这个信号,此时信号量 - 1,总共信号量为 0.

Ps:信号量也可以做分布式限流

RCountDownLatch

1)使用方式

例如有 5 个选手比赛,要求所有选手到达终点之后才可以宣布比赛结束.

    @GetMapping("/match")fun match(): String {val match = redisson.getCountDownLatch("match")//1.设置计数器的初始值为 5 (想象成有 5 名选手赛跑)match.trySetCount(5)//2.等待所有资源全被消费 (等待 5 名选手全部跑完)match.await()return "比赛结束!"}@GetMapping("/gogogo/{id}")fun gogogo(@PathVariable("id") id: Long): String {val match = redisson.getCountDownLatch("match")//1.计数器 - 1 (一名选手到达终点)match.countDown()return "选手 $id 号到达终点!"}

2)原理解释

a)redisson.getCountDownLatch("match") 这里实际上就是给 redis 存了一个 key-value,key 就是我们自定义的 "match" 字符串,value 就是计数器.

b)match.trySetCount(5) 就是给这个计数器设置了一个初始值为 5.

c)match.await() 会一直阻塞住,直到计数器的值减为 0.

d)match.countDown() 让计数器 - 1.

这篇关于Redisson 分布式锁 - RLock、RReadWriteLock、RSemaphore、RCountDownLatch(配置、使用、原理)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1031709

相关文章

C++中assign函数的使用

《C++中assign函数的使用》在C++标准模板库中,std::list等容器都提供了assign成员函数,它比操作符更灵活,支持多种初始化方式,下面就来介绍一下assign的用法,具有一定的参考价... 目录​1.assign的基本功能​​语法​2. 具体用法示例​​​(1) 填充n个相同值​​(2)

Spring StateMachine实现状态机使用示例详解

《SpringStateMachine实现状态机使用示例详解》本文介绍SpringStateMachine实现状态机的步骤,包括依赖导入、枚举定义、状态转移规则配置、上下文管理及服务调用示例,重点解... 目录什么是状态机使用示例什么是状态机状态机是计算机科学中的​​核心建模工具​​,用于描述对象在其生命

nginx 负载均衡配置及如何解决重复登录问题

《nginx负载均衡配置及如何解决重复登录问题》文章详解Nginx源码安装与Docker部署,介绍四层/七层代理区别及负载均衡策略,通过ip_hash解决重复登录问题,对nginx负载均衡配置及如何... 目录一:源码安装:1.配置编译参数2.编译3.编译安装 二,四层代理和七层代理区别1.二者混合使用举例

Java JDK1.8 安装和环境配置教程详解

《JavaJDK1.8安装和环境配置教程详解》文章简要介绍了JDK1.8的安装流程,包括官网下载对应系统版本、安装时选择非系统盘路径、配置JAVA_HOME、CLASSPATH和Path环境变量,... 目录1.下载JDK2.安装JDK3.配置环境变量4.检验JDK官网下载地址:Java Downloads

Linux下进程的CPU配置与线程绑定过程

《Linux下进程的CPU配置与线程绑定过程》本文介绍Linux系统中基于进程和线程的CPU配置方法,通过taskset命令和pthread库调整亲和力,将进程/线程绑定到特定CPU核心以优化资源分配... 目录1 基于进程的CPU配置1.1 对CPU亲和力的配置1.2 绑定进程到指定CPU核上运行2 基于

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态

Spring Boot spring-boot-maven-plugin 参数配置详解(最新推荐)

《SpringBootspring-boot-maven-plugin参数配置详解(最新推荐)》文章介绍了SpringBootMaven插件的5个核心目标(repackage、run、start... 目录一 spring-boot-maven-plugin 插件的5个Goals二 应用场景1 重新打包应用

prometheus如何使用pushgateway监控网路丢包

《prometheus如何使用pushgateway监控网路丢包》:本文主要介绍prometheus如何使用pushgateway监控网路丢包问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录监控网路丢包脚本数据图表总结监控网路丢包脚本[root@gtcq-gt-monitor-prome

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数