本文主要是介绍hdu 4635 Strongly connected(强联通),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
题目链接:hdu 4635 Strongly connected
解题思路
先对给定图做强联通分量,选取出度或者是入度为0的分量中点个数最少的一个,然后其它联通分量算一个,将图分成两部分,做完全图并保证两部分是之间的边均为单向边。
代码
#include <cstdio>
#include <cstring>
#include <vector>
#include <stack>
#include <algorithm>using namespace std;
const int maxn = 100005;
typedef long long ll;stack<int> S;
vector<int> G[maxn];
int dfsclock, cntscc, sccno[maxn], pre[maxn];int dfs (int u) {int lowu = pre[u] = ++dfsclock;S.push(u);for (int i = 0; i < G[u].size(); i++) {int v = G[u][i];if (!pre[v]) {int lowv = dfs(v);lowu = min(lowu, lowv);} else if (!sccno[v])lowu = min(lowu, pre[v]);}if (lowu == pre[u]) {cntscc++;while (true) {int x = S.top();S.pop();sccno[x] = cntscc;if (x == u) break;}}return lowu;
}void findSCC(int n) {dfsclock = cntscc = 0;memset(pre, 0, sizeof(pre));memset(sccno, 0, sizeof(sccno));for (int i = 1; i <= n; i++)if (!pre[i]) dfs(i);
}int N, M, C[maxn], in[maxn], ot[maxn];void init () {scanf("%d%d", &N, &M);for (int i = 1; i <= N; i++) G[i].clear();int u, v;for (int i = 0; i < M; i++) {scanf("%d%d", &u, &v);G[u].push_back(v);}findSCC(N);
}ll get(int c1) {int c2 = N - c1;return 1LL * N * (N-1) - 1LL * c1 * c2 - M;
}ll solve () {if (cntscc == 1) return -1;memset(in, 0, sizeof(in));memset(ot, 0, sizeof(ot));memset(C, 0, sizeof(C));for (int i = 1; i <= N; i++) {int u = sccno[i];C[u]++;for (int j = 0; j < G[i].size(); j++) {int v = sccno[G[i][j]];if (u == v) continue;ot[u]++, in[v]++;}}ll ret = 0;for (int i = 1; i <= cntscc; i++) {if (in[i] && ot[i]) continue;ret = max(ret, get(C[i]));}return ret;
}int main () {int cas;scanf("%d", &cas);for (int kcas = 1; kcas <= cas; kcas++) {init();printf("Case %d: %lld\n", kcas, solve());}return 0;
}
这篇关于hdu 4635 Strongly connected(强联通)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!