关于MySQL的一些经验总结

2024-06-04 21:08
文章标签 mysql 经验总结 database

本文主要是介绍关于MySQL的一些经验总结,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

博主负责的项目主要采用阿里云数据库MySQL,最近频繁出现慢SQL告警,执行时间最长的竟然高达5分钟。导出日志后分析,主要原因竟然是没有命中索引和没有分页处理 。

其实这是非常低级的错误,我不禁后背一凉,团队成员的技术水平亟待提高啊。改造这些SQL的过程中,总结了一些经验分享给大家,如果有错误欢迎批评指正。

MySQL性能

最大数据量

抛开数据量和并发数,谈性能都是耍流氓 。MySQL没有限制单表最大记录数,它取决于操作系统对文件大小的限制。

《阿里巴巴Java开发手册》提出单表行数超过500万行或者单表容量超过2GB,才推荐分库分表。性能由综合因素决定,抛开业务复杂度,影响程度依次是硬件配置、MySQL配置、数据表设计、索引优化。500万这个值仅供参考,并非铁律。博主曾经操作过超过4亿行数据的单表,分页查询最新的20条记录耗时0.6秒,SQL语句大致是 select field_1,field_2 from table where id < #{prePageMinId} order by id desc limit 20,prePageMinId是上一页数据记录的最小ID。虽然当时查询速度还凑合,随着数据不断增长,有朝一日必定不堪重负。分库分表是个周期长而风险高的大活儿,应该尽可能在当前结构上优化,比如升级硬件、迁移历史数据等等,实在没辙了再分。对分库分表感兴趣的同学可以阅读分库分表的基本思想。

最大并发数

并发数是指同一时刻数据库能处理多少个请求,由maxconnections和maxuserconnections决定。maxconnections是指MySQL实例的最大连接数,上限值是16384,maxuserconnections是指每个数据库用户的最大连接数。MySQL会为每个连接提供缓冲区,意味着消耗更多的内存。如果连接数设置太高硬件吃不消,太低又不能充分利用硬件。一般要求两者比值超过10%,计算方法如下:

max_used_connections / max_connections * 100% = 3/100 *100% ≈ 3%

查看最大连接数与响应最大连接数:

show variables like '%max_connections%';
show variables like '%max_user_connections%';

在配置文件my.cnf中修改最大连接数

[mysqld]
max_connections = 100
max_used_connections = 20

查询耗时0.5秒

建议将单次查询耗时控制在0.5秒以内,0.5秒是个经验值,源于用户体验的 3秒原则 。如果用户的操作3秒内没有响应,将会厌烦甚至退出。响应时间=客户端UI渲染耗时+网络请求耗时+应用程序处理耗时+查询数据库耗时,0.5秒就是留给数据库1/6的处理时间。

实施原则

相比NoSQL数据库,MySQL是个娇气脆弱的家伙。它就像体育课上的女同学,一点纠纷就和同学闹别扭(扩容难),跑两步就气喘吁吁(容量小并发低),常常身体不适要请假(SQL约束太多)。如今大家都会搞点分布式,应用程序扩容比数据库要容易得多,所以实施原则是 数据库少干活,应用程序多干活 。

 

  • 充分利用但不滥用索引,须知索引也消耗磁盘和CPU。

  • 不推荐使用数据库函数格式化数据,交给应用程序处理。

  • 不推荐使用外键约束,用应用程序保证数据准确性。

  • 写多读少的场景,不推荐使用唯一索引,用应用程序保证唯一性。

  • 适当冗余字段,尝试创建中间表,用应用程序计算中间结果,用空间换时间。

  • 不允许执行极度耗时的事务,配合应用程序拆分成更小的事务。

  • 预估重要数据表(比如订单表)的负载和数据增长态势,提前优化。

数据表设计

数据类型

数据类型的选择原则:更简单或者占用空间更小。

  • 如果长度能够满足,整型尽量使用tinyint、smallint、medium_int而非int。

  • 如果字符串长度确定,采用char类型。

  • 如果varchar能够满足,不采用text类型。

  • 精度要求较高的使用decimal类型,也可以使用BIGINT,比如精确两位小数就乘以100后保存。

  • 尽量采用timestamp而非datetime。

相比datetime,timestamp占用更少的空间,以UTC的格式储存自动转换时区。

避免空值

MySQL中字段为NULL时依然占用空间,会使索引、索引统计更加复杂。从NULL值更新到非NULL无法做到原地更新,容易发生索引分裂影响性能。尽可能将NULL值用有意义的值代替,也能避免SQL语句里面包含 is not null的判断。

text类型优化

由于text字段储存大量数据,表容量会很早涨上去,影响其他字段的查询性能。建议抽取出来放在子表里,用业务主键关联。

索引优化

索引分类

  1. 普通索引:最基本的索引。

  2. 组合索引:多个字段上建立的索引,能够加速复合查询条件的检索。

  3. 唯一索引:与普通索引类似,但索引列的值必须唯一,允许有空值。

  4. 组合唯一索引:列值的组合必须唯一。

  5. 主键索引:特殊的唯一索引,用于唯一标识数据表中的某一条记录,不允许有空值,一般用primary key约束。

  6. 全文索引:用于海量文本的查询,MySQL5.6之后的InnoDB和MyISAM均支持全文索引。由于查询精度以及扩展性不佳,更多的企业选择Elasticsearch。

索引优化

  1. 分页查询很重要,如果查询数据量超过30%,MYSQL不会使用索引。

  2. 单表索引数不超过5个、单个索引字段数不超过5个。

  3. 字符串可使用前缀索引,前缀长度控制在5-8个字符。

  4. 字段唯一性太低,增加索引没有意义,如:是否删除、性别。

  5. 合理使用覆盖索引,如下所示:

    select loginname, nickname from member where login_name = ?

loginname, nickname两个字段建立组合索引,比login_name简单索引要更快

SQL优化

分批处理

博主小时候看到鱼塘挖开小口子放水,水面有各种漂浮物。浮萍和树叶总能顺利通过出水口,而树枝会挡住其他物体通过,有时还会卡住,需要人工清理。MySQL就是鱼塘,最大并发数和网络带宽就是出水口,用户SQL就是漂浮物。不带分页参数的查询或者影响大量数据的update和delete操作,都是树枝,我们要把它打散分批处理,举例说明: 
业务描述:更新用户所有已过期的优惠券为不可用状态。 
SQL语句: update status=0 FROMcoupon WHERE expire_date <= #{currentDate} and status=1; 
如果大量优惠券需要更新为不可用状态,执行这条SQL可能会堵死其他SQL,分批处理伪代码如下:

int pageNo = 1;
int PAGE_SIZE = 100;
while(true) {List<Integer> batchIdList = queryList('select id FROM `coupon` WHERE expire_date <= #{currentDate} and status = 1 limit #{(pageNo-1) * PAGE_SIZE},#{PAGE_SIZE}');if (CollectionUtils.isEmpty(batchIdList)) {return;}update('update status = 0 FROM `coupon` where status = 1 and id in #{batchIdList}')pageNo ++;
}

操作符<>优化

通常<>操作符无法使用索引,举例如下,查询金额不为100元的订单: 
select id from orders where amount != 100; 
如果金额为100的订单极少,这种数据分布严重不均的情况下,有可能使用索引。鉴于这种不确定性,采用union聚合搜索结果,改写方法如下:

(select id from orders where amount > 100)union all
(select id from orders where amount < 100 and amount > 0)

OR优化

在Innodb引擎下or无法使用组合索引,比如:

select id,product_name from orders where mobile_no = '13421800407' or user_id = 100;

OR无法命中mobileno + userid的组合索引,可采用union,如下所示:

(select id,product_name from orders where mobile_no = '13421800407')union
(select id,product_name from orders where user_id = 100);

此时id和product_name字段都有索引,查询才最高效。

IN优化

  1. IN适合主表大子表小,EXIST适合主表小子表大。由于查询优化器的不断升级,很多场景这两者性能差不多一样了。

  2. 尝试改为join查询,举例如下:

    select id from orders where user_id in (select id from user where level = 'VIP');

采用JOIN如下所示:

select o.id from orders o left join user u on o.user_id = u.id where u.level = 'VIP';

不做列运算

通常在查询条件列运算会导致索引失效,如下所示: 
查询当日订单

select id from order where date_format(create_time,'%Y-%m-%d') = '2019-07-01';

date_format函数会导致这个查询无法使用索引,改写后:

select id from order where create_time between '2019-07-01 00:00:00' and '2019-07-01 23:59:59';

避免Select all

如果不查询表中所有的列,避免使用 SELECT *,它会进行全表扫描,不能有效利用索引。

Like优化

like用于模糊查询,举个例子(field已建立索引):

SELECT column FROM table WHERE field like '%keyword%';

这个查询未命中索引,换成下面的写法:

SELECT column FROM table WHERE field like 'keyword%';

去除了前面的%查询将会命中索引,但是产品经理一定要前后模糊匹配呢?全文索引fulltext可以尝试一下,但Elasticsearch才是终极武器。

Join优化

join的实现是采用Nested Loop Join算法,就是通过驱动表的结果集作为基础数据,通过该结数据作为过滤条件到下一个表中循环查询数据,然后合并结果。如果有多个join,则将前面的结果集作为循环数据,再次到后一个表中查询数据。

  1. 驱动表和被驱动表尽可能增加查询条件,满足ON的条件而少用Where,用小结果集驱动大结果集。

  2. 被驱动表的join字段上加上索引,无法建立索引的时候,设置足够的Join Buffer Size。

  3. 禁止join连接三个以上的表,尝试增加冗余字段。

Limit优化

limit用于分页查询时越往后翻性能越差,解决的原则: 缩小扫描范围 ,如下所示:

select * from orders order by id desc limit 100000,10 
耗时0.4秒
select * from orders order by id desc limit 1000000,10
耗时5.2秒

先筛选出ID缩小查询范围,写法如下:

select * from orders where id > (select id from orders order by id desc  limit 1000000, 1) order by id desc limit 0,10
耗时0.5秒

如果查询条件仅有主键ID,写法如下:

select id from orders where id between 1000000 and 1000010 order by id desc
耗时0.3秒

如果以上方案依然很慢呢?只好用游标了,感兴趣的朋友阅读JDBC使用游标实现分页查询的方法

其他数据库

作为一名后端开发人员,务必精通作为存储核心的MySQL或SQL Server,也要积极关注NoSQL数据库,他们已经足够成熟并被广泛采用,能解决特定场景下的性能瓶颈。

这篇关于关于MySQL的一些经验总结的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1031123

相关文章

SQL中的外键约束

外键约束用于表示两张表中的指标连接关系。外键约束的作用主要有以下三点: 1.确保子表中的某个字段(外键)只能引用父表中的有效记录2.主表中的列被删除时,子表中的关联列也会被删除3.主表中的列更新时,子表中的关联元素也会被更新 子表中的元素指向主表 以下是一个外键约束的实例展示

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

如何去写一手好SQL

MySQL性能 最大数据量 抛开数据量和并发数,谈性能都是耍流氓。MySQL没有限制单表最大记录数,它取决于操作系统对文件大小的限制。 《阿里巴巴Java开发手册》提出单表行数超过500万行或者单表容量超过2GB,才推荐分库分表。性能由综合因素决定,抛开业务复杂度,影响程度依次是硬件配置、MySQL配置、数据表设计、索引优化。500万这个值仅供参考,并非铁律。 博主曾经操作过超过4亿行数据

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

MySQL数据库宕机,启动不起来,教你一招搞定!

作者介绍:老苏,10余年DBA工作运维经验,擅长Oracle、MySQL、PG、Mongodb数据库运维(如安装迁移,性能优化、故障应急处理等)公众号:老苏畅谈运维欢迎关注本人公众号,更多精彩与您分享。 MySQL数据库宕机,数据页损坏问题,启动不起来,该如何排查和解决,本文将为你说明具体的排查过程。 查看MySQL error日志 查看 MySQL error日志,排查哪个表(表空间

MySQL高性能优化规范

前言:      笔者最近上班途中突然想丰富下自己的数据库优化技能。于是在查阅了多篇文章后,总结出了这篇! 数据库命令规范 所有数据库对象名称必须使用小写字母并用下划线分割 所有数据库对象名称禁止使用mysql保留关键字(如果表名中包含关键字查询时,需要将其用单引号括起来) 数据库对象的命名要能做到见名识意,并且最后不要超过32个字符 临时库表必须以tmp_为前缀并以日期为后缀,备份

[MySQL表的增删改查-进阶]

🌈个人主页:努力学编程’ ⛅个人推荐: c语言从初阶到进阶 JavaEE详解 数据结构 ⚡学好数据结构,刷题刻不容缓:点击一起刷题 🌙心灵鸡汤:总有人要赢,为什么不能是我呢 💻💻💻数据库约束 🔭🔭🔭约束类型 not null: 指示某列不能存储 NULL 值unique: 保证某列的每行必须有唯一的值default: 规定没有给列赋值时的默认值.primary key:

MySQL-CRUD入门1

文章目录 认识配置文件client节点mysql节点mysqld节点 数据的添加(Create)添加一行数据添加多行数据两种添加数据的效率对比 数据的查询(Retrieve)全列查询指定列查询查询中带有表达式关于字面量关于as重命名 临时表引入distinct去重order by 排序关于NULL 认识配置文件 在我们的MySQL服务安装好了之后, 会有一个配置文件, 也就

Java 连接Sql sever 2008

Java 连接Sql sever 2008 /Sql sever 2008 R2 import java.sql.Connection; import java.sql.DriverManager; import java.sql.ResultSet; import java.sql.Statement; public class TestJDBC

Mysql BLOB类型介绍

BLOB类型的字段用于存储二进制数据 在MySQL中,BLOB类型,包括:TinyBlob、Blob、MediumBlob、LongBlob,这几个类型之间的唯一区别是在存储的大小不同。 TinyBlob 最大 255 Blob 最大 65K MediumBlob 最大 16M LongBlob 最大 4G