漫谈递归:递归的效率问题

2024-06-04 18:58
文章标签 问题 递归 效率 漫谈

本文主要是介绍漫谈递归:递归的效率问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

递归在解决某些问题的时候使得我们思考的方式得以简化,代码也更加精炼,容易阅读。那么既然递归有这么多的优点,我们是不是什么问题都要用递归来解决呢?难道递归就没有缺点吗?今天我们就来讨论一下递归的不足之处。谈到递归就不得不面对它的效率问题。

为什么递归是低效的

还是拿斐波那契(Fibonacci)数列来做例子。在很多教科书或文章中涉及到递归或计算复杂性的地方都会将计算斐波那契数列的程序作为经典示例。如果现在让你以最快的速度用C#写出一个计算斐波那契数列第n个数的函数(不考虑参数小于1或结果溢出等异常情况),我不知你的程序是否会和下列代码类似:

public static ulong Fib(ulong n)
{return (n == 1 || n == 2) ? 1 : Fib(n - 1) + Fib(n - 2);
}

这段代码应该算是短小精悍(执行代码只有一行),直观清晰,而且非常符合许多程序员的代码美学,许多人在面试时写出这样的代码可能心里还会暗爽。但是如果用这段代码试试计算Fib(1000)我想就再也爽不起来了,它的运行时间也许会让你抓狂。

看来好看的代码未必中用,如果程序在效率不能接受那美观神马的就都是浮云了。如果简单分析一下程序的执行流,就会发现问题在哪,以计算Fibonacci(5)为例:

漫谈递归:递归的效率问题

从上图可以看出,在计算Fib(5)的过程中,Fib(1)计算了两次、Fib(2)计算了3次,Fib(3)计算了两次,本来只需要5次计算就可以完成的任务却计算了9次。这个问题随着规模的增加会愈发凸显,以至于Fib(1000)已经无法再可接受的时间内算出。

我们当时使用的是简单的用定义来求 fib(n),也就是使用公式 fib(n) = fib(n-1) + fib(n-2)。这样的想法是很容易想到的,可是仔细分析一下我们发现,当调用fib(n-1)的时候,还要调用fib(n-2),也就是说fib(n-2)调用了两次,同样的道理,调用f(n-2)时f(n-3)也调用了两次,而这些冗余的调用是完全没有必要的。可以计算这个算法的复杂度是指数级的。

改进的斐波那契递归算法

那么计算斐波那契数列是否有更好的递归算法呢? 当然有。让我们来观察一下斐波那契数列的前几项:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55 …

注意到没有,如果我们去掉前面一项,得到的数列依然满足f(n) = f(n-1) – f(n-2), (n>2),而我们得到的数列是以1,2开头的。很容易发现这个数列的第n-1项就是原数列的第n项。怎么样,知道我们该怎么设计算法了吧?我们可以写这样的一个函数,它接受三个参数,前两个是数列的开头两项,第三个是我们想求的以前两个参数开头的数列的第几项。

int fib_i(int a, int b, int n);

在函数内部我们先检查n的值,如果n为3则我们只需返回a+b即可,这是简单情境。如果n>3,那么我们就调用f(b, a+b, n-1),这样我们就缩小了问题的规模(从求第n项变成求第n-1项)。好了,最终代码如下:

int fib_i(int a, int b , int n)
{if(n == 3)return a+b;elsereturn fib_i(b, a+b, n-1);
}

这样得到的算法复杂度是O(n)的。已经是线性的了。它的效率已经可以与迭代算法的效率相比了,但由于还是要反复的进行函数调用,还是不够经济。

递归与迭代的效率比较

我们知道,递归调用实际上是函数自己在调用自己,而函数的调用开销是很大的,系统要为每次函数调用分配存储空间,并将调用点压栈予以记录。而在函数调用结束后,还要释放空间,弹栈恢复断点。所以说,函数调用不仅浪费空间,还浪费时间。

这样,我们发现,同一个问题,如果递归解决方案的复杂度不明显优于其它解决方案的话,那么使用递归是不划算的。因为它的很多时间浪费在对函数调用的处理上。在C++中引入了内联函数的概念,其实就是为了避免简单函数内部语句的执行时间小于函数调用的时间而造成效率降低的情况出现。在这里也是一个道理,如果过多的时间用于了函数调用的处理,那么效率显然高不起来。

举例来说,对于求阶乘的函数来说,其迭代算法的时间复杂度为O(n):

int fact(n)
{int i;int r = 1;for(i = 1; i < = n; i++){r *= i;}return r;
}

而其递归函数的时间复杂度也是O(n):

int fact_r(n)
{if(n == 0)return 1;elsereturn n * f(n);
}

但是递归算法要进行n次函数调用,而迭代算法则只需要进行n次迭代而已。其效率上的差异是很显著的。

小结

由以上分析我们可以看到,递归在处理问题时要反复调用函数,这增大了它的空间和时间开销,所以在使用迭代可以很容易解决的问题中,使用递归虽然可以简化思维过程,但效率上并不合算。效率和开销问题是递归最大的缺点。

虽然有这样的缺点,但是递归的力量仍然是巨大而不可忽视的,因为有些问题使用迭代算法是很难甚至无法解决的(比如汉诺塔问题)。这时递归的作用就显示出来了。

递归的效率问题暂时讨论到这里。后面会介绍到递归计算过程与迭代计算过程,讲解得更详细点。

这篇关于漫谈递归:递归的效率问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1030840

相关文章

mybatis和mybatis-plus设置值为null不起作用问题及解决

《mybatis和mybatis-plus设置值为null不起作用问题及解决》Mybatis-Plus的FieldStrategy主要用于控制新增、更新和查询时对空值的处理策略,通过配置不同的策略类型... 目录MyBATis-plusFieldStrategy作用FieldStrategy类型每种策略的作

linux下多个硬盘划分到同一挂载点问题

《linux下多个硬盘划分到同一挂载点问题》在Linux系统中,将多个硬盘划分到同一挂载点需要通过逻辑卷管理(LVM)来实现,首先,需要将物理存储设备(如硬盘分区)创建为物理卷,然后,将这些物理卷组成... 目录linux下多个硬盘划分到同一挂载点需要明确的几个概念硬盘插上默认的是非lvm总结Linux下多

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

pip install jupyterlab失败的原因问题及探索

《pipinstalljupyterlab失败的原因问题及探索》在学习Yolo模型时,尝试安装JupyterLab但遇到错误,错误提示缺少Rust和Cargo编译环境,因为pywinpty包需要它... 目录背景问题解决方案总结背景最近在学习Yolo模型,然后其中要下载jupyter(有点LSVmu像一个

解决jupyterLab打开后出现Config option `template_path`not recognized by `ExporterCollapsibleHeadings`问题

《解决jupyterLab打开后出现Configoption`template_path`notrecognizedby`ExporterCollapsibleHeadings`问题》在Ju... 目录jupyterLab打开后出现“templandroidate_path”相关问题这是 tensorflo

如何解决Pycharm编辑内容时有光标的问题

《如何解决Pycharm编辑内容时有光标的问题》文章介绍了如何在PyCharm中配置VimEmulator插件,包括检查插件是否已安装、下载插件以及安装IdeaVim插件的步骤... 目录Pycharm编辑内容时有光标1.如果Vim Emulator前面有对勾2.www.chinasem.cn如果tools工

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Java多线程父线程向子线程传值问题及解决

《Java多线程父线程向子线程传值问题及解决》文章总结了5种解决父子之间数据传递困扰的解决方案,包括ThreadLocal+TaskDecorator、UserUtils、CustomTaskDeco... 目录1 背景2 ThreadLocal+TaskDecorator3 RequestContextH

关于Spring @Bean 相同加载顺序不同结果不同的问题记录

《关于Spring@Bean相同加载顺序不同结果不同的问题记录》本文主要探讨了在Spring5.1.3.RELEASE版本下,当有两个全注解类定义相同类型的Bean时,由于加载顺序不同,最终生成的... 目录问题说明测试输出1测试输出2@Bean注解的BeanDefiChina编程nition加入时机总结问题说明

关于最长递增子序列问题概述

《关于最长递增子序列问题概述》本文详细介绍了最长递增子序列问题的定义及两种优化解法:贪心+二分查找和动态规划+状态压缩,贪心+二分查找时间复杂度为O(nlogn),通过维护一个有序的“尾巴”数组来高效... 一、最长递增子序列问题概述1. 问题定义给定一个整数序列,例如 nums = [10, 9, 2