TX2440 ARM开发板Uboot移植(三、添加Nand Flash的有关操作支持)

2024-06-04 09:32

本文主要是介绍TX2440 ARM开发板Uboot移植(三、添加Nand Flash的有关操作支持),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在上一节中我们说过,通常在嵌入式bootloader中,有两种方式来引导启动内核:从Nor Flash启动和从Nand Flash启动,但不管是从Nor启动或者从Nand启动,进入第二阶段以后,两者的执行流程是相同的。当u-boot的start.S运行到“_start_armboot: .word start_armboot”时,就会调用lib_arm/board.c中的start_armboot函数,至此u-boot正式进入第二阶段。此时注意:以前较早的u-boot版本进入第二阶段后,对Nand Flash的支持有新旧两套代码,新代码在drivers/nand目录下,旧代码在drivers/nand_legacy目录下,CFG_NAND_LEGACY宏决定了使用哪套代码,如果定义了该宏就使用旧代码,否则使用新代码。但是现在的u-boot版本对Nand的初始化、读写实现是基于最近的Linux内核的MTD架构,删除了以前传统的执行方法,使移植没有以前那样复杂了,实现Nand的操作和基本命令都直接在drivers/mtd/nand目录下(在doc/README.nand中讲得很清楚)。下面我们结合代码来分析一下u-boot在第二阶段的执行流程:

1.lib_arm/board.c文件中的start_armboot函数调用了drivers/mtd/nand/nand.c文件中的nand_init函数,如下:
  #if defined(CONFIG_CMD_NAND)      
//可以看到CONFIG_CMD_NAND宏决定了Nand的初始化
     
 puts ("NAND: ");
      nand_init();
  #endif
2.nand_init调用了同文件下的nand_init_chip函数;
3.nand_init_chip函数调用cpu/arm920t/s3c24x0/nand.c文件下的board_nand_init函数,然后再调用drivers/mtd/nand/nand_base.c函数中的nand_scan函数;
4.nand_scan函数调用了同文件下的nand_scan_ident函数等。


因为2440和2410对nand控制器的操作有很大的不同,所以s3c24x0/nand.c下对nandflash操作的函数就是我们做移植需要实现的部分了,他与具体的Nand Flash硬件密切相关。

1、修改 cpu\arm920t\s3c24x0\nand.c 文件内容为:

#include <common.h>
#if defined(CONFIG_CMD_NAND) && !defined(CFG_NAND_LEGACY)
#include <nand.h>
#if defined(CONFIG_S3C2410)
#include <s3c2410.h>
#define S3C2410_NFSTAT_READY    (1<<0)
#define S3C2410_NFCONF_nFCE     (1<<11)
/* select chip, for s3c2410 */
static void s3c2410_nand_select_chip(struct mtd_info *mtd, int chip)
{
    S3C2410_NAND * const s3c2410nand = S3C2410_GetBase_NAND();
    if (chip == -1) {
        s3c2410nand->NFCONF |= S3C2410_NFCONF_nFCE;
    } else {
        s3c2410nand->NFCONF &= ~S3C2410_NFCONF_nFCE;
    }
}

static void s3c2410_nand_hwcontrol(struct mtd_info *mtd, int cmd)
{
    S3C2410_NAND * const s3c2410nand = S3C2410_GetBase_NAND();
    struct nand_chip *chip = mtd->priv;

    switch (cmd) {
    case NAND_CTL_SETNCE:
    s3c2410nand->NFCONF &= ~S3C2410_NFCONF_nFCE;
    case NAND_CTL_CLRNCE:
    s3c2410nand->NFCONF |= S3C2410_NFCONF_nFCE;
        printf("%s: called for NCE\n", __FUNCTION__);
        break;
    case NAND_CTL_SETCLE:
        chip->IO_ADDR_W = (void *)&s3c2410nand->NFCMD;
        break;
    case NAND_CTL_SETALE:
        chip->IO_ADDR_W = (void *)&s3c2410nand->NFADDR;
        break;
        /* NAND_CTL_CLRCLE: */
        /* NAND_CTL_CLRALE: */
    default:
        chip->IO_ADDR_W = (void *)&s3c2410nand->NFDATA;
        break;
    }
}

/* s3c2410_nand_devready()
 *
 * returns 0 if the nand is busy, 1 if it is ready
 */
static int s3c2410_nand_devready(struct mtd_info *mtd)
{
    S3C2410_NAND * const s3c2410nand = S3C2410_GetBase_NAND();
    return (s3c2410nand->NFSTAT & S3C2410_NFSTAT_READY);
}
#elif defined(CONFIG_S3C2440)
#include <s3c2440.h>
#define S3C2440_NFSTAT_READY    (1<<0)
#define S3C2440_NFCONT_nFCE     (1<<1)
/* select chip, for s3c2440 */
static void s3c2440_nand_select_chip(struct mtd_info *mtd, int chip)
{
    S3C2440_NAND * const s3c2440nand = S3C2440_GetBase_NAND();
    if (chip == -1) {
        s3c2440nand->NFCONT |= S3C2440_NFCONT_nFCE;
    } else {
        s3c2440nand->NFCONT &= ~S3C2440_NFCONT_nFCE;
    }
}

/* command and control functions */
static void s3c2440_nand_hwcontrol(struct mtd_info *mtd, int cmd)
{
    S3C2440_NAND * const s3c2440nand = S3C2440_GetBase_NAND();
    struct nand_chip *chip = mtd->priv;

    switch (cmd) {
    case NAND_CTL_SETNCE:
    s3c2440nand->NFCONT &= ~S3C2440_NFCONT_nFCE;
    case NAND_CTL_CLRNCE:
    s3c2440nand->NFCONT |= S3C2440_NFCONT_nFCE;
        printf("%s: called for NCE\n", __FUNCTION__);
        break;
    case NAND_CTL_SETCLE:
        chip->IO_ADDR_W = (void *)&s3c2440nand->NFCMD;
        break;
    case NAND_CTL_SETALE:
        chip->IO_ADDR_W = (void *)&s3c2440nand->NFADDR;
        break;
        /* NAND_CTL_CLRCLE: */
        /* NAND_CTL_CLRALE: */
    default:
        chip->IO_ADDR_W = (void *)&s3c2440nand->NFDATA;
        break;
    }
}

/* s3c2440_nand_devready()
 *
 * returns 0 if the nand is busy, 1 if it is ready
 */
static int s3c2440_nand_devready(struct mtd_info *mtd)
{
    S3C2440_NAND * const s3c2440nand = S3C2440_GetBase_NAND();
    return (s3c2440nand->NFSTAT & S3C2440_NFSTAT_READY);
}
#endif
/*
 * Called by drivers/nand/nand.c, initialize the interface of nand flash
 */
int board_nand_init(struct nand_chip *chip)
{
#define TACLS   0
#define TWRPH0  4
#define TWRPH1  2
#if defined(CONFIG_S3C2410)
    S3C2410_NAND * const s3c2410nand = S3C2410_GetBase_NAND();
  /* Enable NAND flash controller, Initialize ECC, enable chip select, Set flash memory timing */
  s3c2410nand->NFCONF = (1<<15)|(1<<12)|(1<<11)|(TACLS<<8)|(TWRPH0<<4)|(TWRPH1<<0); 
    chip->IO_ADDR_R    = (void *)&s3c2410nand->NFDATA;
    chip->IO_ADDR_W    = (void *)&s3c2410nand->NFDATA;
    chip->hwcontrol    = s3c2410_nand_hwcontrol;
    chip->dev_ready    = s3c2410_nand_devready;
    chip->select_chip  = s3c2410_nand_select_chip;
#elif defined(CONFIG_S3C2440)
    S3C2440_NAND * const s3c2440nand = S3C2440_GetBase_NAND();
    s3c2440nand->NFCONF = (TACLS<<12)|(TWRPH0<<8)|(TWRPH1<<4);
    /* Initialize ECC, enable chip select, NAND flash controller enable */
    s3c2440nand->NFCONT = (1<<4)|(0<<1)|(1<<0);
    chip->IO_ADDR_R    = (void *)&s3c2440nand->NFDATA;
    chip->IO_ADDR_W    = (void *)&s3c2440nand->NFDATA;
    chip->hwcontrol    = s3c2440_nand_hwcontrol;
    chip->dev_ready    = s3c2440_nand_devready;
    chip->select_chip  = s3c2440_nand_select_chip;
#endif
    chip->options      = 0;
    chip->eccmode       = NAND_ECC_SOFT;
  return 0;
}
#endif


2、修改文件 include/s3c2440.h ,将 S3C2410_GetBase_NAND 修改为  S3C2440_GetBase_NAND ;仿照S3C2410_GetBase_NAND函数(96行)定义2440的函数:

static inline S3C2440_NAND * const S3C2440_GetBase_NAND(void)
{
    return (S3C2440_NAND * const)S3C2440_NAND_BASE;
}
重新编译u-boot并下载到Nand Flash中,把开发板调到Nand档从Nand启动。现在u-boot已经对我们开发板上256M的Nand Flash完全支持了。Nand相关的基本命令也都可以正常使用了。


3、将环境变量存储到Nand Flash中

从上面的启动信息看,有一个警告信息“*** Warning - bad CRC or NAND, using default environment”,这是因为没有将u-boot的环境变量保存nand中的缘故。u-boot在默认的情况下把环境变量都是保存到Nor Flash中的,所以要修改代码,让他保存到Nand中。修改 include/configs/smdk2440.h 文件:

/* 配置环境变量存放设置 */
#define CFG_ENV_ADDR  (CFG_FLASH_BASE + 0x100000) /* 使用NorFlash时,环境变量存放的开始地址 */
//#define  CFG_ENV_IS_IN_FLASH 1                    /* 环境变量保存的位置在NorFlash  */
#define CFG_ENV_IS_IN_NAND 1                        /*  环境变量保存的位置在NandFlash  */
#define CFG_ENV_OFFSET 0x60000                   /* 使用NandFlash时,环境变量存放的偏移地址 */
#define CFG_ENV_SIZE  0x20000               /*Total Size of Environment Sector;一般设定为NandFlash的一个Sector的大小*/


4、最后编译u-boot,生成u-boot.bin文件。将u-boot.bin下载到开发板的Nand Flash中,再把开发板调到Nand启动档,保存环境变量后重启开发板,那条警告信息现在没有了。

这篇关于TX2440 ARM开发板Uboot移植(三、添加Nand Flash的有关操作支持)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1029701

相关文章

什么是 Flash Attention

Flash Attention 是 由 Tri Dao 和 Dan Fu 等人在2022年的论文 FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness 中 提出的, 论文可以从 https://arxiv.org/abs/2205.14135 页面下载,点击 View PDF 就可以下载。 下面我

STM32内部闪存FLASH(内部ROM)、IAP

1 FLASH简介  1 利用程序存储器的剩余空间来保存掉电不丢失的用户数据 2 通过在程序中编程(IAP)实现程序的自我更新 (OTA) 3在线编程(ICP把整个程序都更新掉) 1 系统的Bootloader写死了,只能用串口下载到指定的位置,启动方式也不方便需要配置BOOT引脚触发启动  4 IAP(自己写的Bootloader,实现程序升级) 1 比如蓝牙转串口,

FreeRTOS-基本介绍和移植STM32

FreeRTOS-基本介绍和STM32移植 一、裸机开发和操作系统开发介绍二、任务调度和任务状态介绍2.1 任务调度2.1.1 抢占式调度2.1.2 时间片调度 2.2 任务状态 三、FreeRTOS源码和移植STM323.1 FreeRTOS源码3.2 FreeRTOS移植STM323.2.1 代码移植3.2.2 时钟中断配置 一、裸机开发和操作系统开发介绍 裸机:前后台系

动手学深度学习【数据操作+数据预处理】

import osos.makedirs(os.path.join('.', 'data'), exist_ok=True)data_file = os.path.join('.', 'data', 'house_tiny.csv')with open(data_file, 'w') as f:f.write('NumRooms,Alley,Price\n') # 列名f.write('NA

线程的四种操作

所属专栏:Java学习        1. 线程的开启 start和run的区别: run:描述了线程要执行的任务,也可以称为线程的入口 start:调用系统函数,真正的在系统内核中创建线程(创建PCB,加入到链表中),此处的start会根据不同的系统,分别调用不同的api,创建好之后的线程,再单独去执行run(所以说,start的本质是调用系统api,系统的api

Java IO 操作——个人理解

之前一直Java的IO操作一知半解。今天看到一个便文章觉得很有道理( 原文章),记录一下。 首先,理解Java的IO操作到底操作的什么内容,过程又是怎么样子。          数据来源的操作: 来源有文件,网络数据。使用File类和Sockets等。这里操作的是数据本身,1,0结构。    File file = new File("path");   字

MySQL——表操作

目录 一、创建表 二、查看表 2.1 查看表中某成员的数据 2.2 查看整个表中的表成员 2.3 查看创建表时的句柄 三、修改表 alter 3.1 重命名 rename 3.2 新增一列 add 3.3 更改列属性 modify 3.4 更改列名称 change 3.5 删除某列 上一篇博客介绍了库的操作,接下来来看一下表的相关操作。 一、创建表 create

STM32 ADC+DMA导致写FLASH失败

最近用STM32G070系列的ADC+DMA采样时,遇到了一些小坑记录一下; 一、ADC+DMA采样时进入死循环; 解决方法:ADC-dma死循环问题_stm32 adc dma死机-CSDN博客 将ADC的DMA中断调整为最高,且增大ADCHAL_ADC_Start_DMA(&hadc1, (uint32_t*)adc_buffer, ADC_Buffer_Size); 的ADC_Bu

开发板NFS挂载文件目录

文章目录 序NFS1. 安装 NFS 服务器和客户端在服务器上(NFS 服务器端)在客户端上(NFS 客户端) 2. 配置 NFS 服务器创建共享目录编辑 `/etc/exports` 文件启动 NFS 服务 3. 在客户端挂载 NFS 共享创建挂载点挂载 NFS 共享验证挂载 4. 设置开机自动挂载5. 解决权限问题 序 本节主要实现虚拟机(服务器)与开发板(客户端)通过N

封装MySQL操作时Where条件语句的组织

在对数据库进行封装的过程中,条件语句应该是相对难以处理的,毕竟条件语句太过于多样性。 条件语句大致分为以下几种: 1、单一条件,比如:where id = 1; 2、多个条件,相互间关系统一。比如:where id > 10 and age > 20 and score < 60; 3、多个条件,相互间关系不统一。比如:where (id > 10 OR age > 20) AND sco