TX2440 ARM开发板Uboot移植(三、添加Nand Flash的有关操作支持)

2024-06-04 09:32

本文主要是介绍TX2440 ARM开发板Uboot移植(三、添加Nand Flash的有关操作支持),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在上一节中我们说过,通常在嵌入式bootloader中,有两种方式来引导启动内核:从Nor Flash启动和从Nand Flash启动,但不管是从Nor启动或者从Nand启动,进入第二阶段以后,两者的执行流程是相同的。当u-boot的start.S运行到“_start_armboot: .word start_armboot”时,就会调用lib_arm/board.c中的start_armboot函数,至此u-boot正式进入第二阶段。此时注意:以前较早的u-boot版本进入第二阶段后,对Nand Flash的支持有新旧两套代码,新代码在drivers/nand目录下,旧代码在drivers/nand_legacy目录下,CFG_NAND_LEGACY宏决定了使用哪套代码,如果定义了该宏就使用旧代码,否则使用新代码。但是现在的u-boot版本对Nand的初始化、读写实现是基于最近的Linux内核的MTD架构,删除了以前传统的执行方法,使移植没有以前那样复杂了,实现Nand的操作和基本命令都直接在drivers/mtd/nand目录下(在doc/README.nand中讲得很清楚)。下面我们结合代码来分析一下u-boot在第二阶段的执行流程:

1.lib_arm/board.c文件中的start_armboot函数调用了drivers/mtd/nand/nand.c文件中的nand_init函数,如下:
  #if defined(CONFIG_CMD_NAND)      
//可以看到CONFIG_CMD_NAND宏决定了Nand的初始化
     
 puts ("NAND: ");
      nand_init();
  #endif
2.nand_init调用了同文件下的nand_init_chip函数;
3.nand_init_chip函数调用cpu/arm920t/s3c24x0/nand.c文件下的board_nand_init函数,然后再调用drivers/mtd/nand/nand_base.c函数中的nand_scan函数;
4.nand_scan函数调用了同文件下的nand_scan_ident函数等。


因为2440和2410对nand控制器的操作有很大的不同,所以s3c24x0/nand.c下对nandflash操作的函数就是我们做移植需要实现的部分了,他与具体的Nand Flash硬件密切相关。

1、修改 cpu\arm920t\s3c24x0\nand.c 文件内容为:

#include <common.h>
#if defined(CONFIG_CMD_NAND) && !defined(CFG_NAND_LEGACY)
#include <nand.h>
#if defined(CONFIG_S3C2410)
#include <s3c2410.h>
#define S3C2410_NFSTAT_READY    (1<<0)
#define S3C2410_NFCONF_nFCE     (1<<11)
/* select chip, for s3c2410 */
static void s3c2410_nand_select_chip(struct mtd_info *mtd, int chip)
{
    S3C2410_NAND * const s3c2410nand = S3C2410_GetBase_NAND();
    if (chip == -1) {
        s3c2410nand->NFCONF |= S3C2410_NFCONF_nFCE;
    } else {
        s3c2410nand->NFCONF &= ~S3C2410_NFCONF_nFCE;
    }
}

static void s3c2410_nand_hwcontrol(struct mtd_info *mtd, int cmd)
{
    S3C2410_NAND * const s3c2410nand = S3C2410_GetBase_NAND();
    struct nand_chip *chip = mtd->priv;

    switch (cmd) {
    case NAND_CTL_SETNCE:
    s3c2410nand->NFCONF &= ~S3C2410_NFCONF_nFCE;
    case NAND_CTL_CLRNCE:
    s3c2410nand->NFCONF |= S3C2410_NFCONF_nFCE;
        printf("%s: called for NCE\n", __FUNCTION__);
        break;
    case NAND_CTL_SETCLE:
        chip->IO_ADDR_W = (void *)&s3c2410nand->NFCMD;
        break;
    case NAND_CTL_SETALE:
        chip->IO_ADDR_W = (void *)&s3c2410nand->NFADDR;
        break;
        /* NAND_CTL_CLRCLE: */
        /* NAND_CTL_CLRALE: */
    default:
        chip->IO_ADDR_W = (void *)&s3c2410nand->NFDATA;
        break;
    }
}

/* s3c2410_nand_devready()
 *
 * returns 0 if the nand is busy, 1 if it is ready
 */
static int s3c2410_nand_devready(struct mtd_info *mtd)
{
    S3C2410_NAND * const s3c2410nand = S3C2410_GetBase_NAND();
    return (s3c2410nand->NFSTAT & S3C2410_NFSTAT_READY);
}
#elif defined(CONFIG_S3C2440)
#include <s3c2440.h>
#define S3C2440_NFSTAT_READY    (1<<0)
#define S3C2440_NFCONT_nFCE     (1<<1)
/* select chip, for s3c2440 */
static void s3c2440_nand_select_chip(struct mtd_info *mtd, int chip)
{
    S3C2440_NAND * const s3c2440nand = S3C2440_GetBase_NAND();
    if (chip == -1) {
        s3c2440nand->NFCONT |= S3C2440_NFCONT_nFCE;
    } else {
        s3c2440nand->NFCONT &= ~S3C2440_NFCONT_nFCE;
    }
}

/* command and control functions */
static void s3c2440_nand_hwcontrol(struct mtd_info *mtd, int cmd)
{
    S3C2440_NAND * const s3c2440nand = S3C2440_GetBase_NAND();
    struct nand_chip *chip = mtd->priv;

    switch (cmd) {
    case NAND_CTL_SETNCE:
    s3c2440nand->NFCONT &= ~S3C2440_NFCONT_nFCE;
    case NAND_CTL_CLRNCE:
    s3c2440nand->NFCONT |= S3C2440_NFCONT_nFCE;
        printf("%s: called for NCE\n", __FUNCTION__);
        break;
    case NAND_CTL_SETCLE:
        chip->IO_ADDR_W = (void *)&s3c2440nand->NFCMD;
        break;
    case NAND_CTL_SETALE:
        chip->IO_ADDR_W = (void *)&s3c2440nand->NFADDR;
        break;
        /* NAND_CTL_CLRCLE: */
        /* NAND_CTL_CLRALE: */
    default:
        chip->IO_ADDR_W = (void *)&s3c2440nand->NFDATA;
        break;
    }
}

/* s3c2440_nand_devready()
 *
 * returns 0 if the nand is busy, 1 if it is ready
 */
static int s3c2440_nand_devready(struct mtd_info *mtd)
{
    S3C2440_NAND * const s3c2440nand = S3C2440_GetBase_NAND();
    return (s3c2440nand->NFSTAT & S3C2440_NFSTAT_READY);
}
#endif
/*
 * Called by drivers/nand/nand.c, initialize the interface of nand flash
 */
int board_nand_init(struct nand_chip *chip)
{
#define TACLS   0
#define TWRPH0  4
#define TWRPH1  2
#if defined(CONFIG_S3C2410)
    S3C2410_NAND * const s3c2410nand = S3C2410_GetBase_NAND();
  /* Enable NAND flash controller, Initialize ECC, enable chip select, Set flash memory timing */
  s3c2410nand->NFCONF = (1<<15)|(1<<12)|(1<<11)|(TACLS<<8)|(TWRPH0<<4)|(TWRPH1<<0); 
    chip->IO_ADDR_R    = (void *)&s3c2410nand->NFDATA;
    chip->IO_ADDR_W    = (void *)&s3c2410nand->NFDATA;
    chip->hwcontrol    = s3c2410_nand_hwcontrol;
    chip->dev_ready    = s3c2410_nand_devready;
    chip->select_chip  = s3c2410_nand_select_chip;
#elif defined(CONFIG_S3C2440)
    S3C2440_NAND * const s3c2440nand = S3C2440_GetBase_NAND();
    s3c2440nand->NFCONF = (TACLS<<12)|(TWRPH0<<8)|(TWRPH1<<4);
    /* Initialize ECC, enable chip select, NAND flash controller enable */
    s3c2440nand->NFCONT = (1<<4)|(0<<1)|(1<<0);
    chip->IO_ADDR_R    = (void *)&s3c2440nand->NFDATA;
    chip->IO_ADDR_W    = (void *)&s3c2440nand->NFDATA;
    chip->hwcontrol    = s3c2440_nand_hwcontrol;
    chip->dev_ready    = s3c2440_nand_devready;
    chip->select_chip  = s3c2440_nand_select_chip;
#endif
    chip->options      = 0;
    chip->eccmode       = NAND_ECC_SOFT;
  return 0;
}
#endif


2、修改文件 include/s3c2440.h ,将 S3C2410_GetBase_NAND 修改为  S3C2440_GetBase_NAND ;仿照S3C2410_GetBase_NAND函数(96行)定义2440的函数:

static inline S3C2440_NAND * const S3C2440_GetBase_NAND(void)
{
    return (S3C2440_NAND * const)S3C2440_NAND_BASE;
}
重新编译u-boot并下载到Nand Flash中,把开发板调到Nand档从Nand启动。现在u-boot已经对我们开发板上256M的Nand Flash完全支持了。Nand相关的基本命令也都可以正常使用了。


3、将环境变量存储到Nand Flash中

从上面的启动信息看,有一个警告信息“*** Warning - bad CRC or NAND, using default environment”,这是因为没有将u-boot的环境变量保存nand中的缘故。u-boot在默认的情况下把环境变量都是保存到Nor Flash中的,所以要修改代码,让他保存到Nand中。修改 include/configs/smdk2440.h 文件:

/* 配置环境变量存放设置 */
#define CFG_ENV_ADDR  (CFG_FLASH_BASE + 0x100000) /* 使用NorFlash时,环境变量存放的开始地址 */
//#define  CFG_ENV_IS_IN_FLASH 1                    /* 环境变量保存的位置在NorFlash  */
#define CFG_ENV_IS_IN_NAND 1                        /*  环境变量保存的位置在NandFlash  */
#define CFG_ENV_OFFSET 0x60000                   /* 使用NandFlash时,环境变量存放的偏移地址 */
#define CFG_ENV_SIZE  0x20000               /*Total Size of Environment Sector;一般设定为NandFlash的一个Sector的大小*/


4、最后编译u-boot,生成u-boot.bin文件。将u-boot.bin下载到开发板的Nand Flash中,再把开发板调到Nand启动档,保存环境变量后重启开发板,那条警告信息现在没有了。

这篇关于TX2440 ARM开发板Uboot移植(三、添加Nand Flash的有关操作支持)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1029701

相关文章

Mybatis对MySQL if 函数的不支持问题解读

《Mybatis对MySQLif函数的不支持问题解读》接手项目后,为了实现多租户功能,引入了Mybatis-plus,发现之前运行正常的SQL语句报错,原因是Mybatis不支持MySQL的if函... 目录MyBATis对mysql if 函数的不支持问题描述经过查询网上搜索资料找到原因解决方案总结Myb

MySQL游标和触发器的操作流程

《MySQL游标和触发器的操作流程》本文介绍了MySQL中的游标和触发器的使用方法,游标可以对查询结果集进行逐行处理,而触发器则可以在数据表发生更改时自动执行预定义的操作,感兴趣的朋友跟随小编一起看看... 目录游标游标的操作流程1. 定义游标2.打开游标3.利用游标检索数据4.关闭游标例题触发器触发器的基

在C#中分离饼图的某个区域的操作指南

《在C#中分离饼图的某个区域的操作指南》在处理Excel饼图时,我们可能需要将饼图的各个部分分离出来,以使它们更加醒目,Spire.XLS提供了Series.DataFormat.Percent属性,... 目录引言如何设置饼图各分片之间分离宽度的代码示例:从整个饼图中分离单个分片的代码示例:引言在处理

Python列表的创建与删除的操作指南

《Python列表的创建与删除的操作指南》列表(list)是Python中最常用、最灵活的内置数据结构之一,它支持动态扩容、混合类型、嵌套结构,几乎无处不在,但你真的会创建和删除列表吗,本文给大家介绍... 目录一、前言二、列表的创建方式1. 字面量语法(最常用)2. 使用list()构造器3. 列表推导式

Go异常处理、泛型和文件操作实例代码

《Go异常处理、泛型和文件操作实例代码》Go语言的异常处理机制与传统的面向对象语言(如Java、C#)所使用的try-catch结构有所不同,它采用了自己独特的设计理念和方法,:本文主要介绍Go异... 目录一:异常处理常见的异常处理向上抛中断程序恢复程序二:泛型泛型函数泛型结构体泛型切片泛型 map三:文

MySQL基本表查询操作汇总之单表查询+多表操作大全

《MySQL基本表查询操作汇总之单表查询+多表操作大全》本文全面介绍了MySQL单表查询与多表操作的关键技术,包括基本语法、高级查询、表别名使用、多表连接及子查询等,并提供了丰富的实例,感兴趣的朋友跟... 目录一、单表查询整合(一)通用模版展示(二)举例说明(三)注意事项(四)Mapper简单举例简单查询

Nginx概念、架构、配置与虚拟主机实战操作指南

《Nginx概念、架构、配置与虚拟主机实战操作指南》Nginx是一个高性能的HTTP服务器、反向代理服务器、负载均衡器和IMAP/POP3/SMTP代理服务器,它支持高并发连接,资源占用低,功能全面且... 目录Nginx 深度解析:概念、架构、配置与虚拟主机实战一、Nginx 的概念二、Nginx 的特点

MySQL 数据库进阶之SQL 数据操作与子查询操作大全

《MySQL数据库进阶之SQL数据操作与子查询操作大全》本文详细介绍了SQL中的子查询、数据添加(INSERT)、数据修改(UPDATE)和数据删除(DELETE、TRUNCATE、DROP)操作... 目录一、子查询:嵌套在查询中的查询1.1 子查询的基本语法1.2 子查询的实战示例二、数据添加:INSE

使用Python在PDF中绘制多种图形的操作示例

《使用Python在PDF中绘制多种图形的操作示例》在进行PDF自动化处理时,人们往往首先想到的是文本生成、图片嵌入或表格绘制等常规需求,然而在许多实际业务场景中,能够在PDF中灵活绘制图形同样至关重... 目录1. 环境准备2. 创建 PDF 文档与页面3. 在 PDF 中绘制不同类型的图形python

Java 操作 MinIO详细步骤

《Java操作MinIO详细步骤》本文详细介绍了如何使用Java操作MinIO,涵盖了从环境准备、核心API详解到实战场景的全过程,文章从基础的桶和对象操作开始,到大文件分片上传、预签名URL生成... 目录Java 操作 MinIO 全指南:从 API 详解到实战场景引言:为什么选择 MinIO?一、环境