可重入锁ReentrantLock源码解析

2024-06-04 08:32

本文主要是介绍可重入锁ReentrantLock源码解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

概述

ReentrantLock:一个可重入互斥锁,具有与使用synchronized方法和语句访问的隐式监视锁相同的基本行为和语义,但具有扩展功能。比如实现公平锁、超时处理、锁中断。

ReentrantLock由最后一个成功锁定且尚未解锁的线程拥有 。当锁不是由另一个线程拥有时,调用lock的线程将成功获取锁。 如果当前线程已经拥有该锁,该方法将立即返回,加锁次数+1。 当前线程是否持有该锁可以使用方法isHeldByCurrentThread()和getHoldCount()进行检查。
该类的构造函数接受可选的公平参数,当设置true ,即可以使用公平锁。在竞争时,锁有利于授予等待最长时间的线程。 否则,该锁不保证任何特定的访问顺序。 锁竞争比较激烈时,公平锁比非公平锁的整体吞吐量小(通常要慢很多),但是具有更小的时间差异来获得锁定并保证更少的饥饿死锁,饥饿死锁的意思是某一个线程一直获取锁但是一直获取不到,这个在非公平锁的场景是会存在的。 但是请注意,锁的公平性不能保证线程调度的公平性。 因此,使用公平锁的线程可以连续获得多次。
建议的做法是unlock一定要在finally中调用,这样能保证锁的释放,避免死锁,如:

class X {private final ReentrantLock lock = new ReentrantLock();// ...public void m() {lock.lock();  // block until condition holds(阻塞,直到条件成立)try {// ... method body} finally {lock.unlock()}}}} 

除了实现Lock接口,这个类定义了许多public种protected方法用于检查锁的状态。 其中一些方法仅适用于仪器和监控。
此类的序列化与内置锁的操作方式相同:反序列化锁处于未锁定状态,无论其序列化时的状态如何。
此锁最多支持同一个线程的2147483647递归锁。 尝试超过此限制会导致Error从锁定方法中抛出。

我们看下Lock源码:

/*** Lock实现提供比使用synchronized方法和语句可以获得的更广泛的锁定操作。* 它们允许更灵活的结构化,可能具有完全不同的属性,并且可以支持多个相关联的对象Condition 。*/
public interface Lock {void lock();void lockInterruptibly() throws InterruptedException;boolean tryLock();boolean tryLock(long time, TimeUnit unit) throws InterruptedException;void unlock();Condition newCondition();
}

ReentrantLock使用了NonfairSyncFairSync这两个Sync的子类来实现公平锁与非公平锁,默认是非公平锁。所以我们先看看SyncNonfairSyncFairSync的实现。

一、Sync源码

	/*** Base of synchronization control for this lock. Subclassed* into fair and nonfair versions below. Uses AQS state to* represent the number of holds on the lock.*/abstract static class Sync extends AbstractQueuedSynchronizer {private static final long serialVersionUID = -5179523762034025860L;abstract void lock();/*** Performs non-fair tryLock.  tryAcquire is implemented in* subclasses, but both need nonfair try for trylock method.*/final boolean nonfairTryAcquire(int acquires) {final Thread current = Thread.currentThread();int c = getState();if (c == 0) {//这个线程第一次加锁,使用CAS设置state=1if (compareAndSetState(0, acquires)) {//设置当前锁的当前持有线程,然后退出并返回成功setExclusiveOwnerThread(current);return true;}} else if (current == getExclusiveOwnerThread()) {//如果不是第一次加锁,则state向上加acquires(这里默认是1)int nextc = c + acquires;if (nextc < 0) // overflowthrow new Error("Maximum lock count exceeded"); //最大支持2147483647次重入setState(nextc);return true;}return false;}protected final boolean tryRelease(int releases) {int c = getState() - releases;if (Thread.currentThread() != getExclusiveOwnerThread())throw new IllegalMonitorStateException();boolean free = false;if (c == 0) {//只有释放锁的次数与加锁次数一致,才能完全释放锁free = true;setExclusiveOwnerThread(null);}setState(c);return free;}protected final boolean isHeldExclusively() {return getExclusiveOwnerThread() == Thread.currentThread();}final ConditionObject newCondition() {return new ConditionObject();}// Methods relayed from outer classfinal Thread getOwner() {return getState() == 0 ? null : getExclusiveOwnerThread();}final int getHoldCount() {return isHeldExclusively() ? getState() : 0;}final boolean isLocked() {return getState() != 0;}/*** Reconstitutes the instance from a stream (that is, deserializes it).* 反序列化,重置为未加锁状态*/private void readObject(java.io.ObjectInputStream s)throws java.io.IOException, ClassNotFoundException {s.defaultReadObject();setState(0); // reset to unlocked state}}

二、NonfairSync源码

    static final class NonfairSync extends Sync {private static final long serialVersionUID = 7316153563782823691L;/*** Performs lock.  Try immediate barge, backing up to normal* acquire on failure.*/final void lock() {//因为是非公平锁,只要锁没有被占有,那么直接加锁成功,不必调用acquire()方法去阻塞等待。if (compareAndSetState(0, 1))setExclusiveOwnerThread(Thread.currentThread());else//调用acquire()方法去阻塞等待acquire(1);}protected final boolean tryAcquire(int acquires) {return nonfairTryAcquire(acquires);}}

三、FairSync源码

static final class FairSync extends Sync {private static final long serialVersionUID = -3000897897090466540L;final void lock() {//直接调用acquire()方法去阻塞等待acquire(1);}/*** Fair version of tryAcquire.  Don't grant access unless* recursive call or no waiters or is first.*/protected final boolean tryAcquire(int acquires) {final Thread current = Thread.currentThread();int c = getState();if (c == 0) {//为保证公平锁,就算当前锁没有被持有,除非自己是第一个,否则不能加锁,因为是tryAcquire尝试加锁,所以不用阻塞,尝试失败就返回if (!hasQueuedPredecessors() &&compareAndSetState(0, acquires)) {setExclusiveOwnerThread(current);return true;}}else if (current == getExclusiveOwnerThread()) {int nextc = c + acquires;if (nextc < 0)throw new Error("Maximum lock count exceeded");setState(nextc);return true;}return false;}}

四、ReentrantLock源码实现

public class ReentrantLock implements Lock, java.io.Serializable {private static final long serialVersionUID = 7373984872572414699L;private final Sync sync;abstract static class Sync extends AbstractQueuedSynchronizer {// ... 省略 ...}static final class NonfairSync extends Sync {// ... 省略 ...}static final class FairSync extends Sync {// ... 省略 ...}/*** Creates an instance of {@code ReentrantLock}.* This is equivalent to using {@code ReentrantLock(false)}.*/public ReentrantLock() {sync = new NonfairSync();}/*** Creates an instance of {@code ReentrantLock} with the* given fairness policy.** @param fair {@code true} if this lock should use a fair ordering policy*/public ReentrantLock(boolean fair) {sync = fair ? new FairSync() : new NonfairSync();}public void lock() {sync.lock();}//如果当前线程不是中断状态则获得锁, 如果当前线程被中断则出现异常。如果是已经在阻塞队列,这个里面会有个循环,不断去获取锁,并判断当前线程是否中断状态,如果是中断状态,则抛出异常,并退出阻塞队列。这样可以在等待一段时间后,及时退出阻塞队列,去做别的事情,避免死锁。public void lockInterruptibly() throws InterruptedException {sync.acquireInterruptibly(1);}//tryLock()方法默认调用nonfairTryAcquire(),只要锁可用,即使当前有其他线程正在等待,它也会成功public boolean tryLock() {return sync.nonfairTryAcquire(1);}public boolean tryLock(long timeout, TimeUnit unit)throws InterruptedException {return sync.tryAcquireNanos(1, unit.toNanos(timeout));}public void unlock() {sync.release(1);}public Condition newCondition() {return sync.newCondition();}public int getHoldCount() {return sync.getHoldCount();}public boolean isHeldByCurrentThread() {return sync.isHeldExclusively();}public boolean isLocked() {return sync.isLocked();}public final boolean isFair() {return sync instanceof FairSync;}protected Thread getOwner() {return sync.getOwner();}public final boolean hasQueuedThreads() {return sync.hasQueuedThreads();}public final boolean hasQueuedThread(Thread thread) {return sync.isQueued(thread);}public final int getQueueLength() {return sync.getQueueLength();}protected Collection<Thread> getQueuedThreads() {return sync.getQueuedThreads();}public boolean hasWaiters(Condition condition) {if (condition == null)throw new NullPointerException();if (!(condition instanceof AbstractQueuedSynchronizer.ConditionObject))throw new IllegalArgumentException("not owner");return sync.hasWaiters((AbstractQueuedSynchronizer.ConditionObject)condition);}public int getWaitQueueLength(Condition condition) {if (condition == null)throw new NullPointerException();if (!(condition instanceof AbstractQueuedSynchronizer.ConditionObject))throw new IllegalArgumentException("not owner");return sync.getWaitQueueLength((AbstractQueuedSynchronizer.ConditionObject)condition);}protected Collection<Thread> getWaitingThreads(Condition condition) {if (condition == null)throw new NullPointerException();if (!(condition instanceof AbstractQueuedSynchronizer.ConditionObject))throw new IllegalArgumentException("not owner");return sync.getWaitingThreads((AbstractQueuedSynchronizer.ConditionObject)condition);}public String toString() {Thread o = sync.getOwner();return super.toString() + ((o == null) ?"[Unlocked]" :"[Locked by thread " + o.getName() + "]");}
}

能看出来,无论公平锁还是非公平锁,lock()方法都是阻塞的,公平与否区别在于当state是0时,非公平锁此时调用lock()方法会直接加锁,公平锁会判断自己是不是阻塞队列中最靠前的一个,是则加锁,否则就进入阻塞队列等待。
阻塞可能会导致线程一直等待,造成资源的浪费或者线程死锁,此时我们可以通过trylock()方法,它调用获取锁失败后是直接返回,不会进入阻塞队列。或者通过lockInterruptibly()方法,可以随时中断当前线程的阻塞等待状态并退出阻塞队列。

五、Condition类详解

在Java中,Condition类是Java.util.concurrent包下的一个接口,用于支持线程的等待和通知机制。它通常与Lock接口一起使用,用于实现线程间的同步和协调。
Condition类提供了以下方法:

  1. await():使当前线程等待,直到被其他线程调用signal()或signalAll()方法唤醒。
  2. awaitUninterruptibly():类似于await()方法,但是在等待期间不会响应线程中断。
  3. await(long time, TimeUnit unit):使当前线程等待一段时间,在指定的时间内没有被其他线程调用signal()或signalAll()方法唤醒,将自动唤醒。
  4. awaitNanos(long nanosTimeout):使当前线程等待一段纳秒时间,在指定的时间内没有被其他线程调用signal()或signalAll()方法唤醒,将自动唤醒。
  5. awaitUntil(Date deadline):使当前线程等待直到某个时间,如果在指定时间内没有被其他线程调用signal()或signalAll()方法唤醒,将自动唤醒。
  6. signal():唤醒一个等待在Condition上的线程,并使其从await()方法返回。
  7. signalAll():唤醒所有等待在Condition上的线程,并使它们从await()方法返回。使用示例:
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;public class ConditionExample {private final Lock lock = new ReentrantLock();private final Condition condition = lock.newCondition();public void doSomething() {lock.lock();try {// 等待条件condition.await();// 执行其他操作} catch (InterruptedException e) {e.printStackTrace();} finally {lock.unlock();}}//由其它线程来调用这个方法,唤醒线程public void notifyThread() {lock.lock();try {// 唤醒线程condition.signal();} finally {lock.unlock();}}
}

这篇关于可重入锁ReentrantLock源码解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1029569

相关文章

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

Java Scanner类解析与实战教程

《JavaScanner类解析与实战教程》JavaScanner类(java.util包)是文本输入解析工具,支持基本类型和字符串读取,基于Readable接口与正则分隔符实现,适用于控制台、文件输... 目录一、核心设计与工作原理1.底层依赖2.解析机制A.核心逻辑基于分隔符(delimiter)和模式匹

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

深度解析Python yfinance的核心功能和高级用法

《深度解析Pythonyfinance的核心功能和高级用法》yfinance是一个功能强大且易于使用的Python库,用于从YahooFinance获取金融数据,本教程将深入探讨yfinance的核... 目录yfinance 深度解析教程 (python)1. 简介与安装1.1 什么是 yfinance?