STM32 BSRR BRR ODR 寄存器解析

2024-06-04 05:58
文章标签 stm32 解析 寄存器 odr brr bsrr

本文主要是介绍STM32 BSRR BRR ODR 寄存器解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、用法

经常会看到类似如下的宏定义语句,用于对已经初始化后的 IO 口输出高、低电平。

#define SET_BL_HIGH()           GPIOA->BSRR=GPIO_Pin_0 
#define SET_BL_LOW()			GPIOA->BRR=GPIO_Pin_0

其作用类似于如下两个库函数,

void GPIO_SetBits(GPIO_Typedef* GPIOx, uint16_t GPIO_Pin)
void GPIO_ResetBits(GPIO_Typedef* GPIOx, uint16_t GPIO_Pin)  

而且实际上这两个库函数就是通过修改BSRR,BRR寄存器的值来实现对 IO 口设置的。如下便是输出高电平的函数体:

void GPIO_SetBits(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)
{/* Check the parameters */assert_param(IS_GPIO_ALL_PERIPH(GPIOx));assert_param(IS_GPIO_PIN(GPIO_Pin));GPIOx->BSRR = GPIO_Pin;
}

因此,使用宏或者库函数本质上都是一样的。区别在于使用宏更快,而使用函数更灵活。

二、解释

BSRR 和 BRR 都是 STM32 系列 MCU 中 GPIO 的寄存器。 BSRR 称为端口位设置/清楚寄存器,BRR称为端口位清除寄存器。

BSRR 低 16 位用于设置 GPIO 口对应位输出高电平,高 16 位用于设置 GPIO 口对应位输出低电平。

BRR 低 16 位用于设置 GPIO 口对应位输出低电平。高 16 位为保留地址,读写无效。

所以理论上来讲,BRR 寄存器的功能和 BSRR 寄存器高 16 位的功能是一样的。也就是说,输出低电平的宏语句,可以有如下两种写法。

#define SET_BL_LOW()			GPIOA->BRR=GPIO_Pin_0
等价于
#define SET_BL_LOW()            GPIOA->BSRR=GPIO_Pin_0 << 16 

这么来看的话,其实 BRR 寄存器是比较多余的。而实际上,在最新的 STM32F4 系列 MCU 的 GPIO 寄存器中,已经找不到 BRR 寄存器了,仅保留了 BSRR 寄存器用于实现端口输出高低电平。因此,在 STM32F4 系列 MCU 的 HAL 库函数中,对 GPIO 口输出高低电平的函数为如下形式:

void HAL_GPIO_WritePin(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin, GPIO_PinState PinState)
{/* Check the parameters */assert_param(IS_GPIO_PIN(GPIO_Pin));assert_param(IS_GPIO_PIN_ACTION(PinState));if(PinState != GPIO_PIN_RESET){GPIOx->BSRR = GPIO_Pin;}else{GPIOx->BSRR = (uint32_t)GPIO_Pin << 16U;}
}

而早期 ST 的标准库 std 中,关于 GPIO 口输出高低电平的函数为如下形式,里面通过两个16位的指针分别指向 BSRR 的高16位和低16位。

typedef struct
{__IO uint32_t MODER;    /*!< GPIO port mode register,               Address offset: 0x00      */__IO uint32_t OTYPER;   /*!< GPIO port output type register,        Address offset: 0x04      */__IO uint32_t OSPEEDR;  /*!< GPIO port output speed register,       Address offset: 0x08      */__IO uint32_t PUPDR;    /*!< GPIO port pull-up/pull-down register,  Address offset: 0x0C      */__IO uint32_t IDR;      /*!< GPIO port input data register,         Address offset: 0x10      */__IO uint32_t ODR;      /*!< GPIO port output data register,        Address offset: 0x14      */__IO uint16_t BSRRL;    /*!< GPIO port bit set/reset low register,  Address offset: 0x18      */__IO uint16_t BSRRH;    /*!< GPIO port bit set/reset high register, Address offset: 0x1A      */__IO uint32_t LCKR;     /*!< GPIO port configuration lock register, Address offset: 0x1C      */__IO uint32_t AFR[2];   /*!< GPIO alternate function registers,     Address offset: 0x20-0x24 */
} GPIO_TypeDef;
void GPIO_SetBits(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)
{/* Check the parameters */assert_param(IS_GPIO_ALL_PERIPH(GPIOx));assert_param(IS_GPIO_PIN(GPIO_Pin));GPIOx->BSRRL = GPIO_Pin;
}
void GPIO_ResetBits(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)
{/* Check the parameters */assert_param(IS_GPIO_ALL_PERIPH(GPIOx));assert_param(IS_GPIO_PIN(GPIO_Pin));GPIOx->BSRRH = GPIO_Pin;
}

可见,不管是输出高还是输出低,都是对 BSRR 寄存器的操作。

三、BSRR、BRR、 ODR 之间的关系

配置 BSRR , BRR 是为了对端口输出进行配置,而 ODR 寄存器也是用于输出数据的寄存器,一个 ODR 寄存器控制了一组(16位)的 GPIO 输出。因此,对 ODR 进行修改也可以到达对 IO 口输出进行配置。

但是,由于对 ODR 寄存器的读写操作必须以 16 位的形式进行。因此,如果使用 ODR 改写数据以控制输出时,须采用“读-改-写”的形式进行。

假设需要对 GPIOA_Pin_6 输出高电平。采用改写 ODR 寄存器的方式时,使用“读-改-写”操作,代码如下:

uint32_t temp;
temp = GPIOA->ODR;
temp = temp | GPIO_Pin_6;
GPIOA->ODR = temp;

而使用改写 BSRR 寄存器时,仅需要使用如下语句:

GPIOA->BSRR = GPIO_Pin_6;

这是因为在修改 ODR 时,为了确保对端口 6 的修改不会影响到其他端口的输出,需要对端口的原始数据进行保存,之后再对端口 6 的值进行修改,最后再写入寄存器。而对 BSRR 的操作,是写 1 有效,写 0 不改变原状态,因此可以对端口 6 置 1,其他位保持为 0。BSRR 为 1 的位,会修改相应的 ODR 位,从而控制输出电平。

对 BSRR 的操作可以实现原子操作。因此在设置单个 IO 口输出时,使用 BSRR 进行操作会更加方便。

但也有例外的时候,在需要对单个IO口进行 Toggle 操作时(即对当前输出取反输出,当前输出为高则输出低,当前输出低则输出高),官方的库函数就是直接对 ODR 寄存器进行操作的。代码如下:

void HAL_GPIO_TogglePin(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)
{/* Check the parameters */assert_param(IS_GPIO_PIN(GPIO_Pin));GPIOx->ODR ^= GPIO_Pin;
}

这是因为,0 和 1 与 1 进行异或操作被取反,0 和 1 与 0 进行异或操作保持原值。如下:

0 ^ 1 = 1
1 ^ 1 = 00 ^ 0 = 0
1 ^ 0 = 1

这篇关于STM32 BSRR BRR ODR 寄存器解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1029251

相关文章

MySQL中FIND_IN_SET函数与INSTR函数用法解析

《MySQL中FIND_IN_SET函数与INSTR函数用法解析》:本文主要介绍MySQL中FIND_IN_SET函数与INSTR函数用法解析,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友一... 目录一、功能定义与语法1、FIND_IN_SET函数2、INSTR函数二、本质区别对比三、实际场景案例分

Java图片压缩三种高效压缩方案详细解析

《Java图片压缩三种高效压缩方案详细解析》图片压缩通常涉及减少图片的尺寸缩放、调整图片的质量(针对JPEG、PNG等)、使用特定的算法来减少图片的数据量等,:本文主要介绍Java图片压缩三种高效... 目录一、基于OpenCV的智能尺寸压缩技术亮点:适用场景:二、JPEG质量参数压缩关键技术:压缩效果对比

关于WebSocket协议状态码解析

《关于WebSocket协议状态码解析》:本文主要介绍关于WebSocket协议状态码的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录WebSocket协议状态码解析1. 引言2. WebSocket协议状态码概述3. WebSocket协议状态码详解3

CSS Padding 和 Margin 区别全解析

《CSSPadding和Margin区别全解析》CSS中的padding和margin是两个非常基础且重要的属性,它们用于控制元素周围的空白区域,本文将详细介绍padding和... 目录css Padding 和 Margin 全解析1. Padding: 内边距2. Margin: 外边距3. Padd

Oracle数据库常见字段类型大全以及超详细解析

《Oracle数据库常见字段类型大全以及超详细解析》在Oracle数据库中查询特定表的字段个数通常需要使用SQL语句来完成,:本文主要介绍Oracle数据库常见字段类型大全以及超详细解析,文中通过... 目录前言一、字符类型(Character)1、CHAR:定长字符数据类型2、VARCHAR2:变长字符数

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

Springboot @Autowired和@Resource的区别解析

《Springboot@Autowired和@Resource的区别解析》@Resource是JDK提供的注解,只是Spring在实现上提供了这个注解的功能支持,本文给大家介绍Springboot@... 目录【一】定义【1】@Autowired【2】@Resource【二】区别【1】包含的属性不同【2】@

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Java并发编程必备之Synchronized关键字深入解析

《Java并发编程必备之Synchronized关键字深入解析》本文我们深入探索了Java中的Synchronized关键字,包括其互斥性和可重入性的特性,文章详细介绍了Synchronized的三种... 目录一、前言二、Synchronized关键字2.1 Synchronized的特性1. 互斥2.

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI