一文搞明白golang底层原子级内存操作 的使用(sync atomic包)

2024-06-04 03:44

本文主要是介绍一文搞明白golang底层原子级内存操作 的使用(sync atomic包),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        在我们的程序开发中,对于并发的处理一直都是一件很头疼的事情(Rust这种天生无并发困扰的语言除外), 在go语言中,官方也给我们提供了底层的原子级内存操作,这对于同步算法的实现是非常有用的。

atomic包使用结论

        由于这个包里面定义的一堆函数官方都不推荐使用,所以这个包里面的函数仅作为参考。我们主要搞明白类型定义和使用即可。 这个atomic包里面的类型定义看似一大推,其实归纳起来就8种,分别是 :Bool, Int32/64, Uint32/64, Pointer, Uintptr, Value ;  还有他们的方法,基本都一样,即 最多也就以下这5个方法:

  1. Add对原子数增加的一个增量数据;
  2. Store将数据存储到原子中,当这个Store被调用的时候,他的数据是不允许被拷贝的;
  3. Load从原子中加载对应的数据;
  4. Swap使用新的数据替换就的数据;
  5. CompareAndSwap比较和交换数据。

只要你搞明白了上面的5个方法的使用,这个atomic包的使用也就明白了。

原子级内存操作使用示例

以下我们就以 atomic.Int64 类型的使用为例,来说明如何使用, 其他的类型使用都是一样的,不同的类型方法多少而已,只要有的方法实用都是一样的。

直接上测试用例, 看明白这个测试用例也就明白了, 里面都有详细的注释说明。

import ("sync/atomic""testing"
)// sync atomic数据类型操作使用示例, 单元测试用例
// 其他的另外7种atomic类型的使用和这个都类似,不在赘述!
// @author tekintian <tekintian@gmail.com>
// @see https://pkg.go.dev/sync/atomic
func TestAtomicType(t *testing.T) {// int64类型的原子数,//  他对于的类型声明是 type Int64 struct {// contains filtered or unexported fields}// 这个地方我们只需要定义就可以,不需要初始化. 其他几种类型也是一样var an1 atomic.Int64// 定义了变量后,我们就可以操作他对应的5个方法了an1.Store(10)     // 把 10存入这个原子变量an1.Add(1)        // 增量加1 类似于  10+1ret := an1.Load() // Load取出结果,这里ret为 11if ret != 11 {t.Fatalf("test failed expected 10, got %d", ret)} else {t.Logf("store 10 add 1 ok, got %d", ret)}an1.Swap(100) // 使用100对原子数据进行交换, 交换后的结果为100if an1.Load() != 100 {t.Fatalf("test failed expected to be 100, got %v", an1.Load())} else {t.Logf("an1.Swap(100) ok, got %d", an1.Load())}// 比较并交换,这里会拿第一个参数的值和原子数进行比较,//  如果第一个参数的值和原子数相等,就会拿第二个参数的值对对原子数进行交换, 否则返回false,不进行交换swapped := an1.CompareAndSwap(10, 200) // 第一个参数 10 和当前原子数100比较,不会被交换if !swapped {t.Logf("atomic data not swapped, now data is %v, but param1 for compare is 10", an1.Load())} else {t.Fatalf("an1.CompareAndSwap(10, 200) fail, expected 100 got %d", an1.Load())}if an1.CompareAndSwap(100, 200) { // 会被交换// 现在原子的数据应该是 200t.Logf("atomic data swapped, now data is %v ", an1.Load())} else {t.Fatalf("atomic data swapped failed: %v", an1.Load())}/*// 单元测试结果 下面的参数 -v 表示输出测试日志 即 使用t.Log输出的内容✗ go test -run=^TestAtomicType$ -v=== RUN   TestAtomicTypetype_val_test.go:43: store 10 add 1 ok, got 11type_val_test.go:49: an1.Swap(100) ok, got 100type_val_test.go:55: atomic data not swapped, now data is 100, but param1 for compare is 10type_val_test.go:62: atomic data swapped, now data is 200--- PASS: TestAtomicType (0.00s)PASSok      atomic_demo    0.356s*/
}

另外2个官方示例就不贴了,原理都一样, 大家有兴趣的话可以自己去瞄瞄 pkg.go.dev/sync/atomic#example-Value-ReadMostly

怎么样,这个看似很神秘,其实也很简单的底层原子级内存操作是不是明白了?

atomic类型定义参考

type Bool
func (x *Bool) CompareAndSwap(old, new bool) (swapped bool)
func (x *Bool) Load() bool
func (x *Bool) Store(val bool)
func (x *Bool) Swap(new bool) (old bool)
type Int32
func (x *Int32) Add(delta int32) (new int32)
func (x *Int32) CompareAndSwap(old, new int32) (swapped bool)
func (x *Int32) Load() int32
func (x *Int32) Store(val int32)
func (x *Int32) Swap(new int32) (old int32)
type Int64
func (x *Int64) Add(delta int64) (new int64)
func (x *Int64) CompareAndSwap(old, new int64) (swapped bool)
func (x *Int64) Load() int64
func (x *Int64) Store(val int64)
func (x *Int64) Swap(new int64) (old int64)
type Pointer
func (x *Pointer[T]) CompareAndSwap(old, new *T) (swapped bool)
func (x *Pointer[T]) Load() *T
func (x *Pointer[T]) Store(val *T)
func (x *Pointer[T]) Swap(new *T) (old *T)
type Uint32
func (x *Uint32) Add(delta uint32) (new uint32)
func (x *Uint32) CompareAndSwap(old, new uint32) (swapped bool)
func (x *Uint32) Load() uint32
func (x *Uint32) Store(val uint32)
func (x *Uint32) Swap(new uint32) (old uint32)
type Uint64
func (x *Uint64) Add(delta uint64) (new uint64)
func (x *Uint64) CompareAndSwap(old, new uint64) (swapped bool)
func (x *Uint64) Load() uint64
func (x *Uint64) Store(val uint64)
func (x *Uint64) Swap(new uint64) (old uint64)
type Uintptr
func (x *Uintptr) Add(delta uintptr) (new uintptr)
func (x *Uintptr) CompareAndSwap(old, new uintptr) (swapped bool)
func (x *Uintptr) Load() uintptr
func (x *Uintptr) Store(val uintptr)
func (x *Uintptr) Swap(new uintptr) (old uintptr)
type Value
func (v *Value) CompareAndSwap(old, new any) (swapped bool)
func (v *Value) Load() (val any)
func (v *Value) Store(val any)
func (v *Value) Swap(new any) (old any)

 atomic函数的定义参考

这个看上去一大堆,其实下面这些个函数的定义官方都不建议使用! 在手册中你都能看到这样一句话“Consider using the more ergonomic and less error-prone xxx instead.”  都建议你使用更符合人体工程学的且不容易出错的 xxx 方法代替

func AddInt32(addr *int32, delta int32) (new int32)
func AddInt64(addr *int64, delta int64) (new int64)
func AddUint32(addr *uint32, delta uint32) (new uint32)
func AddUint64(addr *uint64, delta uint64) (new uint64)
func AddUintptr(addr *uintptr, delta uintptr) (new uintptr)
func CompareAndSwapInt32(addr *int32, old, new int32) (swapped bool)
func CompareAndSwapInt64(addr *int64, old, new int64) (swapped bool)
func CompareAndSwapPointer(addr *unsafe.Pointer, old, new unsafe.Pointer) (swapped bool)
func CompareAndSwapUint32(addr *uint32, old, new uint32) (swapped bool)
func CompareAndSwapUint64(addr *uint64, old, new uint64) (swapped bool)
func CompareAndSwapUintptr(addr *uintptr, old, new uintptr) (swapped bool)
func LoadInt32(addr *int32) (val int32)
func LoadInt64(addr *int64) (val int64)
func LoadPointer(addr *unsafe.Pointer) (val unsafe.Pointer)
func LoadUint32(addr *uint32) (val uint32)
func LoadUint64(addr *uint64) (val uint64)
func LoadUintptr(addr *uintptr) (val uintptr)
func StoreInt32(addr *int32, val int32)
func StoreInt64(addr *int64, val int64)
func StorePointer(addr *unsafe.Pointer, val unsafe.Pointer)
func StoreUint32(addr *uint32, val uint32)
func StoreUint64(addr *uint64, val uint64)
func StoreUintptr(addr *uintptr, val uintptr)
func SwapInt32(addr *int32, new int32) (old int32)
func SwapInt64(addr *int64, new int64) (old int64)
func SwapPointer(addr *unsafe.Pointer, new unsafe.Pointer) (old unsafe.Pointer)
func SwapUint32(addr *uint32, new uint32) (old uint32)
func SwapUint64(addr *uint64, new uint64) (old uint64)
func SwapUintptr(addr *uintptr, new uintptr) (old uintptr)

参考文档 atomic package - sync/atomic - Go Packages

这篇关于一文搞明白golang底层原子级内存操作 的使用(sync atomic包)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1028974

相关文章

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

golang程序打包成脚本部署到Linux系统方式

《golang程序打包成脚本部署到Linux系统方式》Golang程序通过本地编译(设置GOOS为linux生成无后缀二进制文件),上传至Linux服务器后赋权执行,使用nohup命令实现后台运行,完... 目录本地编译golang程序上传Golang二进制文件到linux服务器总结本地编译Golang程序

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态

prometheus如何使用pushgateway监控网路丢包

《prometheus如何使用pushgateway监控网路丢包》:本文主要介绍prometheus如何使用pushgateway监控网路丢包问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录监控网路丢包脚本数据图表总结监控网路丢包脚本[root@gtcq-gt-monitor-prome

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

SpringBoot中如何使用Assert进行断言校验

《SpringBoot中如何使用Assert进行断言校验》Java提供了内置的assert机制,而Spring框架也提供了更强大的Assert工具类来帮助开发者进行参数校验和状态检查,下... 目录前言一、Java 原生assert简介1.1 使用方式1.2 示例代码1.3 优缺点分析二、Spring Fr

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

java使用protobuf-maven-plugin的插件编译proto文件详解

《java使用protobuf-maven-plugin的插件编译proto文件详解》:本文主要介绍java使用protobuf-maven-plugin的插件编译proto文件,具有很好的参考价... 目录protobuf文件作为数据传输和存储的协议主要介绍在Java使用maven编译proto文件的插件

SpringBoot线程池配置使用示例详解

《SpringBoot线程池配置使用示例详解》SpringBoot集成@Async注解,支持线程池参数配置(核心数、队列容量、拒绝策略等)及生命周期管理,结合监控与任务装饰器,提升异步处理效率与系统... 目录一、核心特性二、添加依赖三、参数详解四、配置线程池五、应用实践代码说明拒绝策略(Rejected

C++ Log4cpp跨平台日志库的使用小结

《C++Log4cpp跨平台日志库的使用小结》Log4cpp是c++类库,本文详细介绍了C++日志库log4cpp的使用方法,及设置日志输出格式和优先级,具有一定的参考价值,感兴趣的可以了解一下... 目录一、介绍1. log4cpp的日志方式2.设置日志输出的格式3. 设置日志的输出优先级二、Window