PE文件结构详解之头信息解析

2024-06-03 23:12

本文主要是介绍PE文件结构详解之头信息解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

PE文件结构详解

  • 一、前言
    • 1.概述
    • 2.PE文件结构
    • 3.所用工具
  • 二、DOS头(DOS Header)解析
    • 1.作用
    • 2.图例
    • 3.参数详解
    • 4.总结
  • 三、DOS Stub
    • 1.作用
    • 2.图例
  • 四、NT头(NT Header)解析
    • 1.作用
    • 2.PE标识图例
    • 3.文件头(COFF头)图例
    • 4.可选头(Optional Header)图例
  • 五、区段头(Section Header)
    • 1.作用
    • 2.图例
  • 六、附C++解析源码

一、前言

1.概述

PE文件(Portable Executable File)是Windows上最常见的可执行文件,按文件后缀来说就是.exe.dll文件,还有一些其他的文件,例如.sys系统文件,不过最常见以及常用的就是.exe.dll,在初学阶段狭义上也可以就把PE文件就理解成.exe和.dll文件。

2.PE文件结构

  1. DOS头(DOS Header)
  2. DOS Stub
  3. NT头(NT Header)
    • PE标识(Signature)
    • 文件头(File Header)
    • 可选头(OptionHeader)
  4. 区段头(Section Header)

3.所用工具

WinHex-20.7-x86-x64.exe
PETool v1.0.0.5.exe
010EditorProtable


二、DOS头(DOS Header)解析

1.作用

  1. 兼容性: 让老的DOS系统识别这是一个可执行文件,即使它不能运行。
  2. 定位PE头: e_lfanew字段指向PE头的开始位置,操作系统通过这个字段找到PE文件的真正头部,从而加载和执行文件。

2.图例

范围:起始地址开始,长度64字节
我们可以通过使用WinHex软件来打开一个PE文件,其中如下图红框包裹的部分就是DOS头的内容,长度固定为64个字节。
在这里插入图片描述

3.参数详解

其中注释的内容不重要,可以忽略。

typedef struct _IMAGE_DOS_HEADER {      // DOS .EXE头WORD   e_magic;                     // 魔数(Magic number),固定MZ//WORD   e_cblp;                      // 文件最后一页的字节数//WORD   e_cp;                        // 文件中的页数//WORD   e_crlc;                      // 重定位项数目//WORD   e_cparhdr;                   // 头部大小,以段落(16字节)为单位//WORD   e_minalloc;                  // 程序所需的最小额外段数//WORD   e_maxalloc;                  // 程序所需的最大额外段数//WORD   e_ss;                        // 初始(相对)SS值//WORD   e_sp;                        // 初始SP值//WORD   e_csum;                      // 校验和//WORD   e_ip;                        // 初始IP值//WORD   e_cs;                        // 初始(相对)CS值//WORD   e_lfarlc;                    // 重定位表的文件地址//WORD   e_ovno;                      // 覆盖编号//WORD   e_res[4];                    // 保留字//WORD   e_oemid;                     // OEM标识符(用于e_oeminfo)//WORD   e_oeminfo;                   // OEM信息(由e_oemid指定)//WORD   e_res2[10];                  // 保留字LONG   e_lfanew;                    // 新EXE头的文件地址(PE头的偏移量)
} IMAGE_DOS_HEADER, *PIMAGE_DOS_HEADER;

4.总结

其中的e_magic参数可以用来判断这个文件是不是PE文件。
e_lfanew表示的是新的PE头的偏移位置,例如程序的起始地址是0x01,e_lfanew的值是0xF0,那么新的PE头的位置就是0x01+0xF0。


三、DOS Stub

1.作用

一个典型的DOS Stub可能会包含一个简短的DOS程序,这个程序通常会执行以下操作:

  1. 显示一条消息,说明该程序需要在Windows环境下运行。
  2. 终止程序的执行。

约等于没有用,因为DOS Stub在windwos系统上是不会执行的。

2.图例

范围:DOS头后开始,至e_lfanew偏移量结束。
我们可以看到红框的右边解析的Ascii码,里面有这么一段文字。
This program cannot be run in DOS mode.
可得出结论这玩意在windows上没什么用,就是在DOS系统上显示消息用的。
范围为之后 至 e_lfanew偏移量之前。
在这里插入图片描述


四、NT头(NT Header)解析

1.作用

NT头,其中包含三个部分

  1. PE标识(PE签名,Signature)
  2. 标准文件头(COFF头,Common Object File Format Header)
  3. 可选头(Optional Header)

PE头就是我们PE文件的最重要的部分之一了,其中包含了很多重要的信息。

2.PE标识图例

范围:e_lfanew偏移量开始,长度4字节。
其中数据0x00004550(从小到大读)就是:
50=P
45=E
00=\0
00=\0
在这里插入图片描述

3.文件头(COFF头)图例

范围:PE标识开始,长度20字节
在这里插入图片描述
注释的内容不重要,可以忽略。

typedef struct _IMAGE_FILE_HEADER {WORD  Machine;              // 指定目标机器类型WORD  NumberOfSections;     // 文件中的节数//DWORD TimeDateStamp;        // 文件创建的时间戳//DWORD PointerToSymbolTable; // 指向符号表的指针(通常为0)//DWORD NumberOfSymbols;      // 符号表中的符号数(通常为0)WORD  SizeOfOptionalHeader; // 可选头的大小WORD  Characteristics;      // 文件的属性标志
} IMAGE_FILE_HEADER, *PIMAGE_FILE_HEADER;

4.可选头(Optional Header)图例

文件头开始,长度为文件头的SizeOfOptionalHeader属性
在这里插入图片描述
注释的内容不重要,可以忽略。
其中的DllCharacteristics中有一条DYNAMIC_BASE表示是否动态基址,可以用010 editor来查看这个值,如下图。
在这里插入图片描述

typedef struct _IMAGE_OPTIONAL_HEADER {WORD    Magic;                       // 标识文件类型,0x10B表示PE32,0x20B标识PE64
//    BYTE    MajorLinkerVersion;          // 链接器的主版本号
//    BYTE    MinorLinkerVersion;          // 链接器的次版本号
//    DWORD   SizeOfCode;                  // 所有代码节的总大小
//    DWORD   SizeOfInitializedData;       // 所有已初始化数据节的总大小
//    DWORD   SizeOfUninitializedData;     // 所有未初始化数据节的总大小DWORD   AddressOfEntryPoint;         // 程序入口点的地址(RVA)OEP
//    DWORD   BaseOfCode;                  // 代码节的起始地址(RVA)
//    DWORD   BaseOfData;                  // 数据节的起始地址(RVA)DWORD   ImageBase;                   // 首选的加载地址DWORD   SectionAlignment;            // 内存对齐大小DWORD   FileAlignment;               // 文件对齐大小
//    WORD    MajorOperatingSystemVersion; // 操作系统的主版本号
//    WORD    MinorOperatingSystemVersion; // 操作系统的次版本号
//    WORD    MajorImageVersion;           // 映像文件的主版本号
//    WORD    MinorImageVersion;           // 映像文件的次版本号
//    WORD    MajorSubsystemVersion;       // 子系统的主版本号
//    WORD    MinorSubsystemVersion;       // 子系统的次版本号
//    DWORD   Win32VersionValue;           // 保留字段,应为0DWORD   SizeOfImage;                 // 文件在内存中的大小,按照SectionAlignment对齐后DWORD   SizeOfHeaders;               // 所有头和节表(区段头)的总大小,按照FileAlignment对齐后
//    DWORD   CheckSum;                    // 校验和
//    WORD    Subsystem;                   // 子系统类型
//    WORD    DllCharacteristics;          // DLL的特性
//    DWORD   SizeOfStackReserve;          // 保留的栈大小
//    DWORD   SizeOfStackCommit;           // 初始提交的栈大小
//    DWORD   SizeOfHeapReserve;           // 保留的堆大小
//    DWORD   SizeOfHeapCommit;            // 初始提交的堆大小
//    DWORD   LoaderFlags;                 // 加载器标志,应为0DWORD   NumberOfRvaAndSizes;         // 数据目录的数量IMAGE_DATA_DIRECTORY DataDirectory[IMAGE_NUMBEROF_DIRECTORY_ENTRIES]; // 数据目录数组
} IMAGE_OPTIONAL_HEADER32, *PIMAGE_OPTIONAL_HEADER32;

五、区段头(Section Header)

1.作用

区段也成为“节”,区段头也叫节表
注释的不重要,可以忽略

2.图例

位置:可选头开始,区段头多个的,每个的固定大小为40个字节,区段头的数量存放在标准头的NumerOfSections属性

typedef struct _IMAGE_SECTION_HEADER {BYTE  Name[IMAGE_SIZEOF_SHORT_NAME];    // 节的名称,通常是一个8字节长的字符串,如“.text”、“.data”等
//    union {
//        DWORD PhysicalAddress;              // 物理地址,不常用
//        DWORD VirtualSize;                  // 节在内存中的实际大小
//    } Misc;DWORD VirtualAddress;                   // 区段在内存中的偏移位值
//    DWORD SizeOfRawData;                    // 区段在文件中对齐后的大小,文件对齐(File Alignment)后的大小DWORD PointerToRawData;                 // 区段在文件中的偏移值
//    DWORD PointerToRelocations;             // 重定位信息表在文件中的位置偏移,通常为0
//    DWORD PointerToLinenumbers;             // 行号信息在文件中的位置偏移,调试信息相关,通常为0
//    WORD  NumberOfRelocations;              // 重定位项的数量
//    WORD  NumberOfLinenumbers;              // 行号信息的数量DWORD Characteristics;                  // 节的属性标志,描述节的特性(可执行、可读、可写等)
} IMAGE_SECTION_HEADER, *PIMAGE_SECTION_HEADER; 

六、附C++解析源码

C++解析PE文件源码github地址

这篇关于PE文件结构详解之头信息解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1028382

相关文章

Spring IoC 容器的使用详解(最新整理)

《SpringIoC容器的使用详解(最新整理)》文章介绍了Spring框架中的应用分层思想与IoC容器原理,通过分层解耦业务逻辑、数据访问等模块,IoC容器利用@Component注解管理Bean... 目录1. 应用分层2. IoC 的介绍3. IoC 容器的使用3.1. bean 的存储3.2. 方法注

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

Java内存分配与JVM参数详解(推荐)

《Java内存分配与JVM参数详解(推荐)》本文详解JVM内存结构与参数调整,涵盖堆分代、元空间、GC选择及优化策略,帮助开发者提升性能、避免内存泄漏,本文给大家介绍Java内存分配与JVM参数详解,... 目录引言JVM内存结构JVM参数概述堆内存分配年轻代与老年代调整堆内存大小调整年轻代与老年代比例元空

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四