2024年5月2日 Go生态洞察:Go 1.22中的安全随机性

2024-06-03 12:20

本文主要是介绍2024年5月2日 Go生态洞察:Go 1.22中的安全随机性,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


🌷🍁 博主猫头虎(🐅🐾)带您 Go to New World✨🍁

🦄 博客首页——🐅🐾猫头虎的博客🎐

专栏链接

🔗 精选专栏

  • 《面试题大全》 — 面试准备的宝典!
  • 《IDEA开发秘籍》 — 提升你的IDEA技能!
  • 《100天精通鸿蒙》 — 从Web/安卓到鸿蒙大师!
  • 《100天精通Golang(基础入门篇)》 — 踏入Go语言世界的第一步!
  • 《100天精通Go语言(精品VIP版)》 — 踏入Go语言世界的第二步!

领域矩阵

🌐 猫头虎技术领域矩阵
深入探索各技术领域,发现知识的交汇点。了解更多,请访问:

  • 猫头虎技术矩阵
  • 新矩阵备用链接

学会Golang语言,畅玩云原生,走遍大小厂~💐


在这里插入图片描述

文章目录

  • 2024年5月2日 Go生态洞察:Go 1.22中的安全随机性
    • 摘要 🌟
    • 引言 🚀
    • 正文 🌐
      • 统计随机性 🧩
        • Unix中的随机数生成器 🔍
      • Go 1生成器 ⚙️
      • PCG生成器 🌟
      • 加密随机性 🔐
      • ChaCha8Rand生成器 🚀
      • 性能比较 📊
    • 总结 📚
    • 参考资料 🔗
    • 下一篇预告 📢
    • QA 环节 🙋
    • 🐅🐾猫头虎建议Go程序员必备技术栈一览表📖:
  • 原创声明

  • 原创作者: 猫头虎

  • 作者wx: Libin9iOak

  • 作者公众号: 猫头虎技术团队

在这里插入图片描述

2024年5月2日 Go生态洞察:Go 1.22中的安全随机性

摘要 🌟

作为一个技术自媒体博主,我是猫头虎,今天我们来探讨Go 1.22在math/rand和crypto/rand之间的改进,如何通过使用加密随机数源改进了Go的随机性,减少了开发者误用math/rand而导致的安全隐患。📚🔍

引言 🚀

计算机并不随机。硬件设计师们非常努力地确保计算机每次都能以相同的方式运行每个程序。然而,当程序需要随机数时,这就需要额外的努力。传统上,计算机科学家和编程语言将随机数分为两种:统计随机数和加密随机数。在Go中,这分别由math/rand和crypto/rand提供。本文将探讨Go 1.22如何通过在math/rand中使用加密随机数源,使这两者更紧密地结合在一起,带来更好的随机性,并在开发者误用math/rand时减少了损害。

正文 🌐

统计随机性 🧩

统计随机数通过基本的统计测试通常适用于仿真、采样、数值分析、非加密的随机算法、随机测试、输入洗牌和随机指数回退。非常基本、易于计算的数学公式在这些用例中表现良好。然而,这些方法非常简单,知道使用的算法的观察者通常可以在看到足够的值后预测序列的其余部分。

Unix中的随机数生成器 🔍

几乎所有编程环境都提供了生成统计随机数的机制,这可以追溯到C语言和Research Unix第三版(V3),该版本增加了一对函数:srand和rand。以下是用现代C语言翻译的生成器源代码:

uint16 ranx;void srand(uint16 seed) {ranx = seed;
}int16 rand(void) {ranx = 13077 * ranx + 6925;return ranx & ~0x8000;
}

调用srand函数用单个整数种子对生成器进行播种,rand函数返回生成器的下一个数值。这种生成器被称为线性同余生成器(LCGs),尽管有已知的问题,但它们仍被广泛使用。

Go 1生成器 ⚙️

Go 1中的math/rand使用了一种线性反馈移位寄存器生成器。其内部状态是607个uint64组成的切片。生成下一个随机数的算法如下:

func (r *rngSource) Uint64() uint64 {r.tap--if r.tap < 0 {r.tap += len(r.vec)}r.feed--if r.feed < 0 {r.feed += len(r.vec)}x := r.vec[r.feed] + r.vec[r.tap]r.vec[r.feed] = xreturn uint64(x)
}

生成下一个数值的过程非常便宜:两个减法、两个条件加法、两个加载、一个加法和一个存储。然而,由于生成器直接返回其内部状态向量中的一个切片元素,读取607个值即可完全暴露其状态,从而可以预测所有未来的值。

PCG生成器 🌟

在math/rand/v2中,我们使用了Melissa O’Neill在2014年发布的PCG算法。以下是PCG生成器的代码示例:

const (pcgM = 0x2360ed051fc65da44385df649fccf645pcgA = 0x5851f42d4c957f2d14057b7ef767814f
)type PCG struct {x uint128
}func (p *PCG) Uint64() uint64 {p.x = p.x * pcgM + pcgAreturn scramble(p.x)
}func scramble(x uint128) uint64 {hi, lo := uint64(x >> 64), uint64(x)hi ^= hi >> 32hi *= 0xda942042e4dd58b5hi ^= hi >> 48hi *= lo | 1
}

PCG生成器使用更少的状态,且对初始值的敏感性较低,能通过许多统计测试,是一种理想的统计生成器。

加密随机性 🔐

加密随机数需要在实际中完全不可预测,即使观察者知道它们的生成方式并且已经观察到生成的任意数量的值。提供加密随机性的最终任务是操作系统,它可以从物理设备中收集真正的随机性,如鼠标、键盘、磁盘和网络的时序,以及CPU本身测量的电噪声。

ChaCha8Rand生成器 🚀

我们的新生成器ChaCha8Rand基于Daniel J. Bernstein的ChaCha流密码,是math/rand/v2中的rand.ChaCha8的实现。其关键特性如下:

  1. ChaCha8Rand使用32字节种子,作为ChaCha8的密钥。
  2. ChaCha8生成64字节的块,并将块作为16个uint32进行处理。
  3. 每生成16个块,ChaCha8Rand将最后32字节作为下一个16个块的密钥,实现了前向安全性。

以下是ChaCha8Rand的实现示例:

func scramble(x uint128) uint64 {hi, lo := uint64(x>>64), uint64(x)hi ^= hi >> 32hi *= 0xda942042e4dd58b5hi ^= hi >> 48hi *= lo | 1
}

性能比较 📊

ChaCha8Rand在性能上稍逊于Go 1生成器,但在现代服务器上差异不超过3ns,大多数程序不会因此成为瓶颈,而许多程序将受益于改进的安全性。

生成器Uint64速度(ns)N(1000)速度(ns)
Go 1生成器1.83.2
PCG生成器2.12.4
ChaCha8Rand2.42.7

总结 📚

Go 1.22通过加强math/rand,使程序更安全而无需更改代码。这是Go持续确保程序默认安全的一小步。

参考资料 🔗

  • Russ Cox, Filippo Valsorda. Secure Randomness in Go 1.22. May 2, 2024.

下一篇预告 📢

下一篇文章将探讨如何在Go 1.22中确保随机数生成器的安全性,敬请期待!


知识点说明
统计随机性Unix和Go 1生成器的分析
PCG生成器新算法及其优点
加密随机性操作系统的角色及实现
ChaCha8Rand新生成器的详细实现
性能比较三种生成器的性能对比

QA 环节 🙋

Q1: 为什么需要ChaCha8Rand生成器?

A1: ChaCha8Rand生成器结合了统计和加密随机性的优点,提高了安全性,并减少了误用带来的安全隐患。

Q2: PCG生成器有哪些优点?

A2: PCG生成器使用更少的状态,对初始值不敏感,通过了许多统计测试,是理想的统计生成器。

Q3: 如何在程序中使用ChaCha8Rand生成器?

A3: 可以直接创建rand.ChaCha8实例,或使用math/rand/v2中的顶层函数。

通过这篇博客,希望大家能够更好地理解和应用Go 1.22中的安全随机性。感谢阅读!👋

在这里插入图片描述

🐅🐾猫头虎建议Go程序员必备技术栈一览表📖:

☁️🐳 Go语言开发者必备技术栈☸️:
🐹 GoLang | 🌿 Git | 🐳 Docker | ☸️ Kubernetes | 🔧 CI/CD | ✅ Testing | 💾 SQL/NoSQL | 📡 gRPC | ☁️ Cloud | 📊 Prometheus | 📚 ELK Stack


🪁🍁 希望本文能够给您带来一定的帮助🌸文章粗浅,敬请批评指正!🐅🐾🍁🐥

原创声明


  • 原创作者: 猫头虎

  • 作者wx: Libin9iOak
    在这里插入图片描述

  • 作者公众号: 猫头虎技术团队

在这里插入图片描述

学习复习Go生态

本文为原创文章,版权归作者所有。未经许可,禁止转载、复制或引用。

作者保证信息真实可靠,但不对准确性和完整性承担责任

未经许可,禁止商业用途。

如有疑问或建议,请联系作者。

感谢您的支持与尊重。

点击下方名片,加入猫头虎领域矩阵。一起探索科技的未来,洞察Go生态,共同成长。

🔗 猫头虎社群 | 🔗 Go语言VIP专栏| 🔗 GitHub 代码仓库 | 🔗 Go生态洞察专栏

这篇关于2024年5月2日 Go生态洞察:Go 1.22中的安全随机性的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1026977

相关文章

input的accept属性让文件上传安全高效

《input的accept属性让文件上传安全高效》文章介绍了HTML的input文件上传`accept`属性在文件上传校验中的重要性和优势,通过使用`accept`属性,可以减少前端JavaScrip... 目录前言那个悄悄毁掉你上传体验的“常见写法”改变一切的 html 小特性:accept真正的魔法:让

Go异常处理、泛型和文件操作实例代码

《Go异常处理、泛型和文件操作实例代码》Go语言的异常处理机制与传统的面向对象语言(如Java、C#)所使用的try-catch结构有所不同,它采用了自己独特的设计理念和方法,:本文主要介绍Go异... 目录一:异常处理常见的异常处理向上抛中断程序恢复程序二:泛型泛型函数泛型结构体泛型切片泛型 map三:文

C++,C#,Rust,Go,Java,Python,JavaScript的性能对比全面讲解

《C++,C#,Rust,Go,Java,Python,JavaScript的性能对比全面讲解》:本文主要介绍C++,C#,Rust,Go,Java,Python,JavaScript性能对比全面... 目录编程语言性能对比、核心优势与最佳使用场景性能对比表格C++C#RustGoJavapythonjav

Go语言实现桥接模式

《Go语言实现桥接模式》桥接模式是一种结构型设计模式,它将抽象部分与实现部分分离,使它们可以独立地变化,本文就来介绍一下了Go语言实现桥接模式,感兴趣的可以了解一下... 目录简介核心概念为什么使用桥接模式?应用场景案例分析步骤一:定义实现接口步骤二:创建具体实现类步骤三:定义抽象类步骤四:创建扩展抽象类步

GO语言实现串口简单通讯

《GO语言实现串口简单通讯》本文分享了使用Go语言进行串口通讯的实践过程,详细介绍了串口配置、数据发送与接收的代码实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 目录背景串口通讯代码代码块分解解析完整代码运行结果背景最近再学习 go 语言,在某宝用5块钱买了个

Go 使用环境变量的实现小结

《Go使用环境变量的实现小结》作为软件开发人员,在项目中管理配置变量的重要性,本文主要介绍在Golang中处理环境变量的强大工具github.com/joho/godotenv包,利用这个包,你可以... 目录步js骤 1:安装步骤 2:制作 .env 文件步骤android 3:加载环境变量步骤 4:利用

GO语言zap日志库理解和使用方法示例

《GO语言zap日志库理解和使用方法示例》Zap是一个高性能、结构化日志库,专为Go语言设计,它由Uber开源,并且在Go社区中非常受欢迎,:本文主要介绍GO语言zap日志库理解和使用方法的相关资... 目录1. zap日志库介绍2.安装zap库3.配置日志记录器3.1 Logger3.2 Sugared

Go语言中如何进行数据库查询操作

《Go语言中如何进行数据库查询操作》在Go语言中,与数据库交互通常通过使用数据库驱动来实现,Go语言支持多种数据库,如MySQL、PostgreSQL、SQLite等,每种数据库都有其对应的官方或第三... 查询函数QueryRow和Query详细对比特性QueryRowQuery返回值数量1个:*sql

Redis的安全机制详细介绍及配置方法

《Redis的安全机制详细介绍及配置方法》本文介绍Redis安全机制的配置方法,包括绑定IP地址、设置密码、保护模式、禁用危险命令、防火墙限制、TLS加密、客户端连接限制、最大内存使用和日志审计等,通... 目录1. 绑定 IP 地址2. 设置密码3. 保护模式4. 禁用危险命令5. 通过防火墙限制访问6.

深入理解Go之==的使用

《深入理解Go之==的使用》本文主要介绍了深入理解Go之==的使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录概述类型基本类型复合类型引用类型接口类型使用type定义的类型不可比较性谈谈map总结概述相信==判等操作,大