由MapTile引发的ResultSet的思考及实践

2024-06-03 10:28

本文主要是介绍由MapTile引发的ResultSet的思考及实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

其实这篇文章应该是上周末来写的,但是苦逼啊。别人都抱怨工作996,我特么直接9117了,连轴转12天,完全没有个人时间,苦逼啊!

本来周末计划看完龙珠Z(日语)布欧篇 呢,给自己一个过儿童节的仪式感,结果也只看了一点,时间太紧张了。

要写的代码、要总结的东西太多了。至于ResultSet这个,从梳理思路、验证逻辑、查阅资料、理解原理、总结记录,又花了我小一天时间,搞到半夜。

一、背景

我五一的时候,写脚本通过代理爬取osm的栅格瓦片数据(即PNG图片),来将我之前写的wkt在线绘制展示_EPSG4326_致敬开源实现瓦片本地化。

对于瓦片数据来说,整个世界都是正方形的,如下图。

瓦片数据按层级划分如下

zoom leveledge lengthnumber of tiles
011*1
122*2
244*4
388*8
41616*16
53232*32
66464*64
7128128*128
8256256*256
9512512*512
1010241024*1024
1120482048*2048
1240964096*4096
1381928192*8192
141638416384*16384
153276832768*32768
166553665536*65536
17131072131072*131072
18262144262144*262144
19524288524288*524288

想要爬取所有层级的栅格瓦片,数据量还是很大的。我从0层级一直爬取到19层级,需要存储14_3165_5765个瓦片,我存入了PostgreSQL。数据库肯定要有对应的可视化工具才好使呀,对于咱们这种面向SQL编程的码农来说,最常见的数据库可视化工具就两种

  • dbeaver:开源免费
  • navicat:闭源付费

在结合这两个工具进行操作时,偶然发现,navicat和dbeaver中执行相同的SQL语句 select * from tiles 时,navicat会出现卡死无响应的情况,而dbeaver不仅不会卡、还会快速的查出前200条数据来。

怎么会出现这种情况呢,按理来说,navicat是闭源付费的,应该做的比dbeaver更好才对啊。

针对这个问题,我从原生的JDBC展开了探索。

二、ResultSet查询调优

以下调优只针对于PostgreSQL数据库。并不适用其他数据库。

通过自己手撕原生的JDBC查询ResultSet、以及查阅pgJDBC官方文档发现有两种查询方式。

  • 默认参数结果集,驱动程序会一次性收集查询的所有结果行,通俗说是多量少次。这也是我们最常使用的方式了,但是数据量大时,会卡爆程序内存和网络带宽。
  • 参数调优结果集,需要关闭查询时的事务,通俗说是少量多次。对于pg来说,查询时的事务也是默认开启的。这个方式对程序来说是性能最优之选。

pgJDBC文档描述如下图

下面就直接进行实战,源码地址为meethigher/result-set-test: this is a postgresql result-set demo

/*** 方案一:* 使用select * from table where order by 进行查询,但是使用默认方式*/
private void plan1(String startTime, String endTime) {StringBuilder queryBuilder = new StringBuilder("select * from ").append(jdbcUtils.getTableName()).append(" where ").append(jdbcUtils.getFieldArray()[2]).append(" >= ? and ").append(jdbcUtils.getFieldArray()[2]).append(" <= ? order by ").append(jdbcUtils.getFieldArray()[2]).append(" asc");long start = System.currentTimeMillis();long startUsedMemory = memoryMonitor.getUsedMemory();try (Connection connection = jdbcUtils.getJdbcTemplate().getDataSource().getConnection()) {PreparedStatement ps = connection.prepareStatement(queryBuilder.toString());ps.setObject(1, startTime);ps.setObject(2, endTime);ResultSet rs = ps.executeQuery();log.info("plan1 consumed {}, {}", TimeUtils.humanizedFormat(System.currentTimeMillis(), start),memoryMonitor.convertBytes(memoryMonitor.getUsedMemory() - startUsedMemory));} catch (Exception ignore) {}
}/*** 方案二:* 使用select * from table where order by 进行查询,但是使用参数调优*/
private void plan2(String startTime, String endTime) {StringBuilder queryBuilder = new StringBuilder("select * from ").append(jdbcUtils.getTableName()).append(" where ").append(jdbcUtils.getFieldArray()[2]).append(" >= ? and ").append(jdbcUtils.getFieldArray()[2]).append(" <= ? order by ").append(jdbcUtils.getFieldArray()[2]).append(" asc");long start = System.currentTimeMillis();long startUsedMemory = memoryMonitor.getUsedMemory();try (Connection connection = jdbcUtils.getJdbcTemplate().getDataSource().getConnection()) {//对于postgresql,只有关闭事务,setFetchSize才会生效connection.setAutoCommit(false);//对于postgresql,后面的两个参数其实也就是默认值时使用的PreparedStatement ps = connection.prepareStatement(queryBuilder.toString(), ResultSet.TYPE_FORWARD_ONLY, ResultSet.CONCUR_READ_ONLY);ps.setFetchSize(1000);ps.setFetchDirection(ResultSet.FETCH_FORWARD);ps.setObject(1, startTime);ps.setObject(2, endTime);ResultSet rs = ps.executeQuery();log.info("plan2 consumed {}, {}", TimeUtils.humanizedFormat(System.currentTimeMillis(), start),memoryMonitor.convertBytes(memoryMonitor.getUsedMemory() - startUsedMemory));} catch (Exception ignore) {}
}

运行结果如下图

综上可知,其实对于这种大数据量来说少量多次的查询远比多量少次的查询要好的多,至少对程序和数据库来说,都是上上只选。这应该也就是navicat会卡死、而dbeaver不仅不会卡死而且查得还很快的原因了吧!

三、参考致谢

How to calculate number of tiles in a bounding box for OpenStreetMaps | by Abhi | Medium

Tiles à la Google Maps: Coordinates, Tile Bounds and Projection | No code | MapTiler

Issuing a Query and Processing the Result | pgJDBC

PostgreSQL: Documentation: 7.4: Issuing a Query and Processing the Result

这篇关于由MapTile引发的ResultSet的思考及实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1026725

相关文章

JDK21对虚拟线程的几种用法实践指南

《JDK21对虚拟线程的几种用法实践指南》虚拟线程是Java中的一种轻量级线程,由JVM管理,特别适合于I/O密集型任务,:本文主要介绍JDK21对虚拟线程的几种用法,文中通过代码介绍的非常详细,... 目录一、参考官方文档二、什么是虚拟线程三、几种用法1、Thread.ofVirtual().start(

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

springboot依靠security实现digest认证的实践

《springboot依靠security实现digest认证的实践》HTTP摘要认证通过加密参数(如nonce、response)验证身份,避免明文传输,但存在密码存储风险,相比基本认证更安全,却因... 目录概述参数Demopom.XML依赖Digest1Application.JavaMyPasswo

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

Java 结构化并发Structured Concurrency实践举例

《Java结构化并发StructuredConcurrency实践举例》Java21结构化并发通过作用域和任务句柄统一管理并发生命周期,解决线程泄漏与任务追踪问题,提升代码安全性和可观测性,其核心... 目录一、结构化并发的核心概念与设计目标二、结构化并发的核心组件(一)作用域(Scopes)(二)任务句柄

Java中的Schema校验技术与实践示例详解

《Java中的Schema校验技术与实践示例详解》本主题详细介绍了在Java环境下进行XMLSchema和JSONSchema校验的方法,包括使用JAXP、JAXB以及专门的JSON校验库等技术,本文... 目录1. XML和jsON的Schema校验概念1.1 XML和JSON校验的必要性1.2 Sche

SpringBoot集成WebService(wsdl)实践

《SpringBoot集成WebService(wsdl)实践》文章介绍了SpringBoot项目中通过缓存IWebService接口实现类的泛型入参类型,减少反射调用提升性能的实现方案,包含依赖配置... 目录pom.XML创建入口ApplicationContextUtils.JavaJacksonUt

MyCat分库分表的项目实践

《MyCat分库分表的项目实践》分库分表解决大数据量和高并发性能瓶颈,MyCat作为中间件支持分片、读写分离与事务处理,本文就来介绍一下MyCat分库分表的实践,感兴趣的可以了解一下... 目录一、为什么要分库分表?二、分库分表的常见方案三、MyCat简介四、MyCat分库分表深度解析1. 架构原理2. 分

Java 中的 equals 和 hashCode 方法关系与正确重写实践案例

《Java中的equals和hashCode方法关系与正确重写实践案例》在Java中,equals和hashCode方法是Object类的核心方法,广泛用于对象比较和哈希集合(如HashMa... 目录一、背景与需求分析1.1 equals 和 hashCode 的背景1.2 需求分析1.3 技术挑战1.4

k8s搭建nfs共享存储实践

《k8s搭建nfs共享存储实践》本文介绍NFS服务端搭建与客户端配置,涵盖安装工具、目录设置及服务启动,随后讲解K8S中NFS动态存储部署,包括创建命名空间、ServiceAccount、RBAC权限... 目录1. NFS搭建1.1 部署NFS服务端1.1.1 下载nfs-utils和rpcbind1.1