由MapTile引发的ResultSet的思考及实践

2024-06-03 10:28

本文主要是介绍由MapTile引发的ResultSet的思考及实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

其实这篇文章应该是上周末来写的,但是苦逼啊。别人都抱怨工作996,我特么直接9117了,连轴转12天,完全没有个人时间,苦逼啊!

本来周末计划看完龙珠Z(日语)布欧篇 呢,给自己一个过儿童节的仪式感,结果也只看了一点,时间太紧张了。

要写的代码、要总结的东西太多了。至于ResultSet这个,从梳理思路、验证逻辑、查阅资料、理解原理、总结记录,又花了我小一天时间,搞到半夜。

一、背景

我五一的时候,写脚本通过代理爬取osm的栅格瓦片数据(即PNG图片),来将我之前写的wkt在线绘制展示_EPSG4326_致敬开源实现瓦片本地化。

对于瓦片数据来说,整个世界都是正方形的,如下图。

瓦片数据按层级划分如下

zoom leveledge lengthnumber of tiles
011*1
122*2
244*4
388*8
41616*16
53232*32
66464*64
7128128*128
8256256*256
9512512*512
1010241024*1024
1120482048*2048
1240964096*4096
1381928192*8192
141638416384*16384
153276832768*32768
166553665536*65536
17131072131072*131072
18262144262144*262144
19524288524288*524288

想要爬取所有层级的栅格瓦片,数据量还是很大的。我从0层级一直爬取到19层级,需要存储14_3165_5765个瓦片,我存入了PostgreSQL。数据库肯定要有对应的可视化工具才好使呀,对于咱们这种面向SQL编程的码农来说,最常见的数据库可视化工具就两种

  • dbeaver:开源免费
  • navicat:闭源付费

在结合这两个工具进行操作时,偶然发现,navicat和dbeaver中执行相同的SQL语句 select * from tiles 时,navicat会出现卡死无响应的情况,而dbeaver不仅不会卡、还会快速的查出前200条数据来。

怎么会出现这种情况呢,按理来说,navicat是闭源付费的,应该做的比dbeaver更好才对啊。

针对这个问题,我从原生的JDBC展开了探索。

二、ResultSet查询调优

以下调优只针对于PostgreSQL数据库。并不适用其他数据库。

通过自己手撕原生的JDBC查询ResultSet、以及查阅pgJDBC官方文档发现有两种查询方式。

  • 默认参数结果集,驱动程序会一次性收集查询的所有结果行,通俗说是多量少次。这也是我们最常使用的方式了,但是数据量大时,会卡爆程序内存和网络带宽。
  • 参数调优结果集,需要关闭查询时的事务,通俗说是少量多次。对于pg来说,查询时的事务也是默认开启的。这个方式对程序来说是性能最优之选。

pgJDBC文档描述如下图

下面就直接进行实战,源码地址为meethigher/result-set-test: this is a postgresql result-set demo

/*** 方案一:* 使用select * from table where order by 进行查询,但是使用默认方式*/
private void plan1(String startTime, String endTime) {StringBuilder queryBuilder = new StringBuilder("select * from ").append(jdbcUtils.getTableName()).append(" where ").append(jdbcUtils.getFieldArray()[2]).append(" >= ? and ").append(jdbcUtils.getFieldArray()[2]).append(" <= ? order by ").append(jdbcUtils.getFieldArray()[2]).append(" asc");long start = System.currentTimeMillis();long startUsedMemory = memoryMonitor.getUsedMemory();try (Connection connection = jdbcUtils.getJdbcTemplate().getDataSource().getConnection()) {PreparedStatement ps = connection.prepareStatement(queryBuilder.toString());ps.setObject(1, startTime);ps.setObject(2, endTime);ResultSet rs = ps.executeQuery();log.info("plan1 consumed {}, {}", TimeUtils.humanizedFormat(System.currentTimeMillis(), start),memoryMonitor.convertBytes(memoryMonitor.getUsedMemory() - startUsedMemory));} catch (Exception ignore) {}
}/*** 方案二:* 使用select * from table where order by 进行查询,但是使用参数调优*/
private void plan2(String startTime, String endTime) {StringBuilder queryBuilder = new StringBuilder("select * from ").append(jdbcUtils.getTableName()).append(" where ").append(jdbcUtils.getFieldArray()[2]).append(" >= ? and ").append(jdbcUtils.getFieldArray()[2]).append(" <= ? order by ").append(jdbcUtils.getFieldArray()[2]).append(" asc");long start = System.currentTimeMillis();long startUsedMemory = memoryMonitor.getUsedMemory();try (Connection connection = jdbcUtils.getJdbcTemplate().getDataSource().getConnection()) {//对于postgresql,只有关闭事务,setFetchSize才会生效connection.setAutoCommit(false);//对于postgresql,后面的两个参数其实也就是默认值时使用的PreparedStatement ps = connection.prepareStatement(queryBuilder.toString(), ResultSet.TYPE_FORWARD_ONLY, ResultSet.CONCUR_READ_ONLY);ps.setFetchSize(1000);ps.setFetchDirection(ResultSet.FETCH_FORWARD);ps.setObject(1, startTime);ps.setObject(2, endTime);ResultSet rs = ps.executeQuery();log.info("plan2 consumed {}, {}", TimeUtils.humanizedFormat(System.currentTimeMillis(), start),memoryMonitor.convertBytes(memoryMonitor.getUsedMemory() - startUsedMemory));} catch (Exception ignore) {}
}

运行结果如下图

综上可知,其实对于这种大数据量来说少量多次的查询远比多量少次的查询要好的多,至少对程序和数据库来说,都是上上只选。这应该也就是navicat会卡死、而dbeaver不仅不会卡死而且查得还很快的原因了吧!

三、参考致谢

How to calculate number of tiles in a bounding box for OpenStreetMaps | by Abhi | Medium

Tiles à la Google Maps: Coordinates, Tile Bounds and Projection | No code | MapTiler

Issuing a Query and Processing the Result | pgJDBC

PostgreSQL: Documentation: 7.4: Issuing a Query and Processing the Result

这篇关于由MapTile引发的ResultSet的思考及实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1026725

相关文章

Spring Boot 配置文件之类型、加载顺序与最佳实践记录

《SpringBoot配置文件之类型、加载顺序与最佳实践记录》SpringBoot的配置文件是灵活且强大的工具,通过合理的配置管理,可以让应用开发和部署更加高效,无论是简单的属性配置,还是复杂... 目录Spring Boot 配置文件详解一、Spring Boot 配置文件类型1.1 applicatio

tomcat多实例部署的项目实践

《tomcat多实例部署的项目实践》Tomcat多实例是指在一台设备上运行多个Tomcat服务,这些Tomcat相互独立,本文主要介绍了tomcat多实例部署的项目实践,具有一定的参考价值,感兴趣的可... 目录1.创建项目目录,测试文China编程件2js.创建实例的安装目录3.准备实例的配置文件4.编辑实例的

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

springboot集成Deepseek4j的项目实践

《springboot集成Deepseek4j的项目实践》本文主要介绍了springboot集成Deepseek4j的项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录Deepseek4j快速开始Maven 依js赖基础配置基础使用示例1. 流式返回示例2. 进阶

Android App安装列表获取方法(实践方案)

《AndroidApp安装列表获取方法(实践方案)》文章介绍了Android11及以上版本获取应用列表的方案调整,包括权限配置、白名单配置和action配置三种方式,并提供了相应的Java和Kotl... 目录前言实现方案         方案概述一、 androidManifest 三种配置方式

Spring Boot中定时任务Cron表达式的终极指南最佳实践记录

《SpringBoot中定时任务Cron表达式的终极指南最佳实践记录》本文详细介绍了SpringBoot中定时任务的实现方法,特别是Cron表达式的使用技巧和高级用法,从基础语法到复杂场景,从快速启... 目录一、Cron表达式基础1.1 Cron表达式结构1.2 核心语法规则二、Spring Boot中定

Ubuntu中Nginx虚拟主机设置的项目实践

《Ubuntu中Nginx虚拟主机设置的项目实践》通过配置虚拟主机,可以在同一台服务器上运行多个独立的网站,本文主要介绍了Ubuntu中Nginx虚拟主机设置的项目实践,具有一定的参考价值,感兴趣的可... 目录简介安装 Nginx创建虚拟主机1. 创建网站目录2. 创建默认索引文件3. 配置 Nginx4

Nginx实现高并发的项目实践

《Nginx实现高并发的项目实践》本文主要介绍了Nginx实现高并发的项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录使用最新稳定版本的Nginx合理配置工作进程(workers)配置工作进程连接数(worker_co

Spring Retry 实现乐观锁重试实践记录

《SpringRetry实现乐观锁重试实践记录》本文介绍了在秒杀商品SKU表中使用乐观锁和MybatisPlus配置乐观锁的方法,并分析了测试环境和生产环境的隔离级别对乐观锁的影响,通过简单验证,... 目录一、场景分析 二、简单验证 2.1、可重复读 2.2、读已提交 三、最佳实践 3.1、配置重试模板