由MapTile引发的ResultSet的思考及实践

2024-06-03 10:28

本文主要是介绍由MapTile引发的ResultSet的思考及实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

其实这篇文章应该是上周末来写的,但是苦逼啊。别人都抱怨工作996,我特么直接9117了,连轴转12天,完全没有个人时间,苦逼啊!

本来周末计划看完龙珠Z(日语)布欧篇 呢,给自己一个过儿童节的仪式感,结果也只看了一点,时间太紧张了。

要写的代码、要总结的东西太多了。至于ResultSet这个,从梳理思路、验证逻辑、查阅资料、理解原理、总结记录,又花了我小一天时间,搞到半夜。

一、背景

我五一的时候,写脚本通过代理爬取osm的栅格瓦片数据(即PNG图片),来将我之前写的wkt在线绘制展示_EPSG4326_致敬开源实现瓦片本地化。

对于瓦片数据来说,整个世界都是正方形的,如下图。

瓦片数据按层级划分如下

zoom leveledge lengthnumber of tiles
011*1
122*2
244*4
388*8
41616*16
53232*32
66464*64
7128128*128
8256256*256
9512512*512
1010241024*1024
1120482048*2048
1240964096*4096
1381928192*8192
141638416384*16384
153276832768*32768
166553665536*65536
17131072131072*131072
18262144262144*262144
19524288524288*524288

想要爬取所有层级的栅格瓦片,数据量还是很大的。我从0层级一直爬取到19层级,需要存储14_3165_5765个瓦片,我存入了PostgreSQL。数据库肯定要有对应的可视化工具才好使呀,对于咱们这种面向SQL编程的码农来说,最常见的数据库可视化工具就两种

  • dbeaver:开源免费
  • navicat:闭源付费

在结合这两个工具进行操作时,偶然发现,navicat和dbeaver中执行相同的SQL语句 select * from tiles 时,navicat会出现卡死无响应的情况,而dbeaver不仅不会卡、还会快速的查出前200条数据来。

怎么会出现这种情况呢,按理来说,navicat是闭源付费的,应该做的比dbeaver更好才对啊。

针对这个问题,我从原生的JDBC展开了探索。

二、ResultSet查询调优

以下调优只针对于PostgreSQL数据库。并不适用其他数据库。

通过自己手撕原生的JDBC查询ResultSet、以及查阅pgJDBC官方文档发现有两种查询方式。

  • 默认参数结果集,驱动程序会一次性收集查询的所有结果行,通俗说是多量少次。这也是我们最常使用的方式了,但是数据量大时,会卡爆程序内存和网络带宽。
  • 参数调优结果集,需要关闭查询时的事务,通俗说是少量多次。对于pg来说,查询时的事务也是默认开启的。这个方式对程序来说是性能最优之选。

pgJDBC文档描述如下图

下面就直接进行实战,源码地址为meethigher/result-set-test: this is a postgresql result-set demo

/*** 方案一:* 使用select * from table where order by 进行查询,但是使用默认方式*/
private void plan1(String startTime, String endTime) {StringBuilder queryBuilder = new StringBuilder("select * from ").append(jdbcUtils.getTableName()).append(" where ").append(jdbcUtils.getFieldArray()[2]).append(" >= ? and ").append(jdbcUtils.getFieldArray()[2]).append(" <= ? order by ").append(jdbcUtils.getFieldArray()[2]).append(" asc");long start = System.currentTimeMillis();long startUsedMemory = memoryMonitor.getUsedMemory();try (Connection connection = jdbcUtils.getJdbcTemplate().getDataSource().getConnection()) {PreparedStatement ps = connection.prepareStatement(queryBuilder.toString());ps.setObject(1, startTime);ps.setObject(2, endTime);ResultSet rs = ps.executeQuery();log.info("plan1 consumed {}, {}", TimeUtils.humanizedFormat(System.currentTimeMillis(), start),memoryMonitor.convertBytes(memoryMonitor.getUsedMemory() - startUsedMemory));} catch (Exception ignore) {}
}/*** 方案二:* 使用select * from table where order by 进行查询,但是使用参数调优*/
private void plan2(String startTime, String endTime) {StringBuilder queryBuilder = new StringBuilder("select * from ").append(jdbcUtils.getTableName()).append(" where ").append(jdbcUtils.getFieldArray()[2]).append(" >= ? and ").append(jdbcUtils.getFieldArray()[2]).append(" <= ? order by ").append(jdbcUtils.getFieldArray()[2]).append(" asc");long start = System.currentTimeMillis();long startUsedMemory = memoryMonitor.getUsedMemory();try (Connection connection = jdbcUtils.getJdbcTemplate().getDataSource().getConnection()) {//对于postgresql,只有关闭事务,setFetchSize才会生效connection.setAutoCommit(false);//对于postgresql,后面的两个参数其实也就是默认值时使用的PreparedStatement ps = connection.prepareStatement(queryBuilder.toString(), ResultSet.TYPE_FORWARD_ONLY, ResultSet.CONCUR_READ_ONLY);ps.setFetchSize(1000);ps.setFetchDirection(ResultSet.FETCH_FORWARD);ps.setObject(1, startTime);ps.setObject(2, endTime);ResultSet rs = ps.executeQuery();log.info("plan2 consumed {}, {}", TimeUtils.humanizedFormat(System.currentTimeMillis(), start),memoryMonitor.convertBytes(memoryMonitor.getUsedMemory() - startUsedMemory));} catch (Exception ignore) {}
}

运行结果如下图

综上可知,其实对于这种大数据量来说少量多次的查询远比多量少次的查询要好的多,至少对程序和数据库来说,都是上上只选。这应该也就是navicat会卡死、而dbeaver不仅不会卡死而且查得还很快的原因了吧!

三、参考致谢

How to calculate number of tiles in a bounding box for OpenStreetMaps | by Abhi | Medium

Tiles à la Google Maps: Coordinates, Tile Bounds and Projection | No code | MapTiler

Issuing a Query and Processing the Result | pgJDBC

PostgreSQL: Documentation: 7.4: Issuing a Query and Processing the Result

这篇关于由MapTile引发的ResultSet的思考及实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1026725

相关文章

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

防止Linux rm命令误操作的多场景防护方案与实践

《防止Linuxrm命令误操作的多场景防护方案与实践》在Linux系统中,rm命令是删除文件和目录的高效工具,但一旦误操作,如执行rm-rf/或rm-rf/*,极易导致系统数据灾难,本文针对不同场景... 目录引言理解 rm 命令及误操作风险rm 命令基础常见误操作案例防护方案使用 rm编程 别名及安全删除

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

MySQL分库分表的实践示例

《MySQL分库分表的实践示例》MySQL分库分表适用于数据量大或并发压力高的场景,核心技术包括水平/垂直分片和分库,需应对分布式事务、跨库查询等挑战,通过中间件和解决方案实现,最佳实践为合理策略、备... 目录一、分库分表的触发条件1.1 数据量阈值1.2 并发压力二、分库分表的核心技术模块2.1 水平分

SpringBoot通过main方法启动web项目实践

《SpringBoot通过main方法启动web项目实践》SpringBoot通过SpringApplication.run()启动Web项目,自动推断应用类型,加载初始化器与监听器,配置Spring... 目录1. 启动入口:SpringApplication.run()2. SpringApplicat

Java整合Protocol Buffers实现高效数据序列化实践

《Java整合ProtocolBuffers实现高效数据序列化实践》ProtocolBuffers是Google开发的一种语言中立、平台中立、可扩展的结构化数据序列化机制,类似于XML但更小、更快... 目录一、Protocol Buffers简介1.1 什么是Protocol Buffers1.2 Pro

linux安装、更新、卸载anaconda实践

《linux安装、更新、卸载anaconda实践》Anaconda是基于conda的科学计算环境,集成1400+包及依赖,安装需下载脚本、接受协议、设置路径、配置环境变量,更新与卸载通过conda命令... 目录随意找一个目录下载安装脚本检查许可证协议,ENTER就可以安装完毕之后激活anaconda安装更