【Python Cookbook】S01E12 根据字段将记录分组

2024-06-03 06:36

本文主要是介绍【Python Cookbook】S01E12 根据字段将记录分组,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 问题
  • 解决方案
  • 讨论

问题

如果有一系列的字典或对象实例,我们想根据某个特定的字段来分组迭代数据。

解决方案

假设有如下字典列表:

rows = [{'address': '5412 N CLARK', 'date': '07/01/2012'},{'address': '5148 N CLARK', 'date': '07/04/2012'},{'address': '5800 E 58TH', 'date': '07/02/2012'},{'address': '2122 N CLARK', 'date': '07/03/2012'},{'address': '5645 N RAVENSWOOD', 'date': '07/02/2012'},{'address': '1060 W ADDISON', 'date': '07/02/2012'},{'address': '4801 N BROADWAY', 'date': '07/01/2012'},{'address': '1039 W GRANVILLE', 'date': '07/04/2012'}
]

在对上述数据进行分组时,使用 itertools.groupby() 函数非常有用。
假设我们想以日期为分组的方式迭代显示数据,首先通过 operator.itemgetter() 函数进行排序,然后通过 itertools.groupby() 进行分组。

from operator import itemgetter
from itertools import groupbyrows.sort(key=itemgetter('date'))
for date, items in groupby(rows, key=itemgetter('date')):print(date)for i in items:print(' ', i)

产生结果如下:

在这里插入图片描述

讨论

函数 groupby() 通过扫描序列对相同值或者 key 指定的值进行分组。原理上,groupby() 创建了一个迭代器,每次迭代时返回一个值以及一个子迭代器,这个子迭代器会产生所有在该分组内具有该值的项。

需要注意的是,必须首先对字段根据需求进行排序,因为 groupby() 只能检查连续的项,不首先排序的话,将无法按照要求的方式进行分组。而反过来讲,如果只需要简单的按照日期将数据进行分组,那么使用 defaultdict() 即可:

from collections import defaultdictrows_by_date = defaultdict(list)
for row in rows:rows_by_date[row['date']].append(row)print(rows_by_date)

结果:

defaultdict(<class 'list'>, {
'07/01/2012': [{'address': '5412 N CLARK', 'date': '07/01/2012'}, {'address': '4801 N BROADWAY', 'date': '07/01/2012'}], 
'07/04/2012': [{'address': '5148 N CLARK', 'date': '07/04/2012'}, {'address': '1039 W GRANVILLE', 'date': '07/04/2012'}], 
'07/02/2012': [{'address': '5800 E 58TH', 'date': '07/02/2012'}, {'address': '5645 N RAVENSWOOD', 'date': '07/02/2012'}, {'address': '1060 W ADDISON', 'date': '07/02/2012'}], 
'07/03/2012': [{'address': '2122 N CLARK', 'date': '07/03/2012'}]})

这篇关于【Python Cookbook】S01E12 根据字段将记录分组的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1026224

相关文章

Spring Boot 配置文件之类型、加载顺序与最佳实践记录

《SpringBoot配置文件之类型、加载顺序与最佳实践记录》SpringBoot的配置文件是灵活且强大的工具,通过合理的配置管理,可以让应用开发和部署更加高效,无论是简单的属性配置,还是复杂... 目录Spring Boot 配置文件详解一、Spring Boot 配置文件类型1.1 applicatio

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

MySQL INSERT语句实现当记录不存在时插入的几种方法

《MySQLINSERT语句实现当记录不存在时插入的几种方法》MySQL的INSERT语句是用于向数据库表中插入新记录的关键命令,下面:本文主要介绍MySQLINSERT语句实现当记录不存在时... 目录使用 INSERT IGNORE使用 ON DUPLICATE KEY UPDATE使用 REPLACE

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1