回炉重造java----JUC(第一天)

2024-06-03 04:44
文章标签 java 第一天 juc 回炉 重造

本文主要是介绍回炉重造java----JUC(第一天),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • JUC前置知识
  • ①进程和线程的区别?
  • ②并行和并发的区别?
  • ③异步调用和同步调用的区别?
  • ④创建线程的方法
  • ⑤线程的上下文切换
  • ⑥TimeUtil
  • ⑦Interrupt
  • ⑧如何在一个线程中终止另外一个线程?
  • ⑨线程的状态
  • 共享模型之管程
  •  阻塞式:Synchronized
  • 线程八锁问题
  • 变量的线程安全分析 
  • 常见的线程安全类
  • Monitor

JUC前置知识


①进程和线程的区别?

①其根本区别在于进程是操作系统资源分配的基本单位,而线程是CP任务调度和执行的基本单位。

②一个进程可以有多个线程,至少有一个,而一个线程只能属于一个进程。

③同一个线程里的进程共享资源,而进程之间的资源是相互独立的。

④开销方面,创建,切换或者销毁一个进程的开销明显大于线程的创建,切换和开销。

⑤通信方面,进程间通信相对复杂,一般是要通过网络进行通信,而线程之间因为是共享线程的资源,所以通信相对简单。

②并行和并发的区别?

①并发:当有多个线程在执行时,但是如果系统是单核CPU系统时,CPU在同一时刻只能执行一个线程,也叫作串行执行,但是CPU会通过时间片的方式进行线程之间的切换执行,一般把这种线程轮流使用CPU的方式叫做并发。

②并行:上面讲的是系统在单核CPU下的情况,但是如果系统是多核CPU时,在同一时刻会有多个线程被执行,线程之间互不干扰,这就叫做并行。

③异步调用和同步调用的区别?

        ①同步通常指的是事件、操作或进程之间的有序关系。在一个同步场景中,一个操作必须在另一个操作完成后才能开始执行。同步还可以指代多个线程或进程在执行过程中需要进行协调,例如通过锁、信号量等机制来确保数据一致性或避免竞争条件。

         ②异步描述的是事件、操作或进程之间相互独立的关系。在异步场景中,一个操作可以在不等待其他操作完成的情况下开始执行。异步操作使得多个任务可以独立进行,从而提高系统的并发性能和响应能力。

④创建线程的方法

        ①继承Thread类,重写Run方法

        ②实现Runnable接口,重写Run方法

        ③实现Callable接口,重写call方法

        ④线程池

⑤线程的上下文切换

注:sleep不释放锁,但是会让出CPU

⑥TimeUtil

public enum TimeUnit {/*** Time unit representing one thousandth of a microsecond*/NANOSECONDS {public long toNanos(long d)   { return d; }public long toMicros(long d)  { return d/(C1/C0); }public long toMillis(long d)  { return d/(C2/C0); }public long toSeconds(long d) { return d/(C3/C0); }public long toMinutes(long d) { return d/(C4/C0); }public long toHours(long d)   { return d/(C5/C0); }public long toDays(long d)    { return d/(C6/C0); }public long convert(long d, TimeUnit u) { return u.toNanos(d); }int excessNanos(long d, long m) { return (int)(d - (m*C2)); }},/*** Time unit representing one thousandth of a millisecond*/MICROSECONDS {public long toNanos(long d)   { return x(d, C1/C0, MAX/(C1/C0)); }public long toMicros(long d)  { return d; }public long toMillis(long d)  { return d/(C2/C1); }public long toSeconds(long d) { return d/(C3/C1); }public long toMinutes(long d) { return d/(C4/C1); }public long toHours(long d)   { return d/(C5/C1); }public long toDays(long d)    { return d/(C6/C1); }public long convert(long d, TimeUnit u) { return u.toMicros(d); }int excessNanos(long d, long m) { return (int)((d*C1) - (m*C2)); }},/*** Time unit representing one thousandth of a second*/MILLISECONDS {public long toNanos(long d)   { return x(d, C2/C0, MAX/(C2/C0)); }public long toMicros(long d)  { return x(d, C2/C1, MAX/(C2/C1)); }public long toMillis(long d)  { return d; }public long toSeconds(long d) { return d/(C3/C2); }public long toMinutes(long d) { return d/(C4/C2); }public long toHours(long d)   { return d/(C5/C2); }public long toDays(long d)    { return d/(C6/C2); }public long convert(long d, TimeUnit u) { return u.toMillis(d); }int excessNanos(long d, long m) { return 0; }},/*** Time unit representing one second*/SECONDS {public long toNanos(long d)   { return x(d, C3/C0, MAX/(C3/C0)); }public long toMicros(long d)  { return x(d, C3/C1, MAX/(C3/C1)); }public long toMillis(long d)  { return x(d, C3/C2, MAX/(C3/C2)); }public long toSeconds(long d) { return d; }public long toMinutes(long d) { return d/(C4/C3); }public long toHours(long d)   { return d/(C5/C3); }public long toDays(long d)    { return d/(C6/C3); }public long convert(long d, TimeUnit u) { return u.toSeconds(d); }int excessNanos(long d, long m) { return 0; }},/*** Time unit representing sixty seconds*/MINUTES {public long toNanos(long d)   { return x(d, C4/C0, MAX/(C4/C0)); }public long toMicros(long d)  { return x(d, C4/C1, MAX/(C4/C1)); }public long toMillis(long d)  { return x(d, C4/C2, MAX/(C4/C2)); }public long toSeconds(long d) { return x(d, C4/C3, MAX/(C4/C3)); }public long toMinutes(long d) { return d; }public long toHours(long d)   { return d/(C5/C4); }public long toDays(long d)    { return d/(C6/C4); }public long convert(long d, TimeUnit u) { return u.toMinutes(d); }int excessNanos(long d, long m) { return 0; }},/*** Time unit representing sixty minutes*/HOURS {public long toNanos(long d)   { return x(d, C5/C0, MAX/(C5/C0)); }public long toMicros(long d)  { return x(d, C5/C1, MAX/(C5/C1)); }public long toMillis(long d)  { return x(d, C5/C2, MAX/(C5/C2)); }public long toSeconds(long d) { return x(d, C5/C3, MAX/(C5/C3)); }public long toMinutes(long d) { return x(d, C5/C4, MAX/(C5/C4)); }public long toHours(long d)   { return d; }public long toDays(long d)    { return d/(C6/C5); }public long convert(long d, TimeUnit u) { return u.toHours(d); }int excessNanos(long d, long m) { return 0; }},/*** Time unit representing twenty four hours*/DAYS {public long toNanos(long d)   { return x(d, C6/C0, MAX/(C6/C0)); }public long toMicros(long d)  { return x(d, C6/C1, MAX/(C6/C1)); }public long toMillis(long d)  { return x(d, C6/C2, MAX/(C6/C2)); }public long toSeconds(long d) { return x(d, C6/C3, MAX/(C6/C3)); }public long toMinutes(long d) { return x(d, C6/C4, MAX/(C6/C4)); }public long toHours(long d)   { return x(d, C6/C5, MAX/(C6/C5)); }public long toDays(long d)    { return d; }public long convert(long d, TimeUnit u) { return u.toDays(d); }int excessNanos(long d, long m) { return 0; }};

Thread中sleep的技巧:

        Thread.sleep(500);//默认是毫秒TimeUnit.MILLISECONDS.sleep(500);

sleep的技巧:

⑦Interrupt

         如果是打断sleep或者wait或者join的线程,Isinterrupt()返回的结果依旧是FALSE,但是会通过抛出异常的方式回应。

        如果是打断正在运行的进程,Isinterrupt()返回的结果就是TRUE。但是只是设置这个标记,不会真正的直接停掉线程。

⑧如何在一个线程中终止另外一个线程?

 

⑨线程的状态

        ①New:新建状态。

        ②Runnable:可运行状态(其包含了可运行,正在运行和IO阻塞)。

        ③Blocked:阻塞状态(像拿不到锁阻塞等待)。

        ④Waiting:等待状态,一般要使用notify或者notifyAll方法唤醒。

        ⑤Timed_Waiting:超时等待状态。

        ⑥Terminated:终止状态。所以当你第二次调用start方法的时候就会报错。

共享模型之管程

并发:原子性,可见性和有序性

 阻塞式:Synchronized

实际上是使用对象锁保证了临界区内代码的原子性。 

public class syntest {private static Object object = new Object();private static int num=0;public static void main(String[] args) throws InterruptedException {//创建一个线程Thread t1 = new Thread(() -> {for (int i = 0; i < 10; i++) {synchronized (object){System.out.println("线程一获得了锁");num++;}}}, "t1");//创建一个线程Thread t2 = new Thread(() -> {for (int i = 0; i < 10; i++) {synchronized (object){System.out.println("线程二获得了锁");num--;}}}, "t2");t1.start();t2.start();t1.join();t2.join();System.out.println(num);}
}

synchronize可以锁对象,也可以锁成员方法(锁的是this对象),还可以锁静态方法(锁的是该类)

线程八锁问题

情况一:锁对象 

情况二:sleep不释放锁

 情况三:添加一个无锁的普通方法,并行执行普通方法

情况四:成员方法上锁的是this对象

情况五:静态方法上锁的是class,与锁this对象时两个不同的对象,不会互斥

情况六:静态方法上锁的是class

情况七:静态方法上锁的是class,与锁this对象时两个不同的对象,不会互斥

 情况八:锁的都是class类对象

变量的线程安全分析 

①成员变量和静态变量都是线程不安全的

②局部变量是线程安全。但是如果局部变量有引用的话而且暴露给了外部(即创建的子类中创建一个线程去操作引用),就是不安全的。

常见的线程安全类

①String,被final修饰,并且为不可变类

②包装类Integer,Boolean,Dobue.....,也是被final修饰,并且为不可变类

③StringBuffer,也是被final修饰

④集合中的vector和hashtable

⑤java.util.concurrent包下的类

这篇关于回炉重造java----JUC(第一天)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1026039

相关文章

Java中Map的五种遍历方式实现与对比

《Java中Map的五种遍历方式实现与对比》其实Map遍历藏着多种玩法,有的优雅简洁,有的性能拉满,今天咱们盘一盘这些进阶偏基础的遍历方式,告别重复又臃肿的代码,感兴趣的小伙伴可以了解下... 目录一、先搞懂:Map遍历的核心目标二、几种遍历方式的对比1. 传统EntrySet遍历(最通用)2. Lambd

Spring Boot 中 RestTemplate 的核心用法指南

《SpringBoot中RestTemplate的核心用法指南》本文详细介绍了RestTemplate的使用,包括基础用法、进阶配置技巧、实战案例以及最佳实践建议,通过一个腾讯地图路线规划的案... 目录一、环境准备二、基础用法全解析1. GET 请求的三种姿势2. POST 请求深度实践三、进阶配置技巧1

springboot+redis实现订单过期(超时取消)功能的方法详解

《springboot+redis实现订单过期(超时取消)功能的方法详解》在SpringBoot中使用Redis实现订单过期(超时取消)功能,有多种成熟方案,本文为大家整理了几个详细方法,文中的示例代... 目录一、Redis键过期回调方案(推荐)1. 配置Redis监听器2. 监听键过期事件3. Redi

Spring Boot 处理带文件表单的方式汇总

《SpringBoot处理带文件表单的方式汇总》本文详细介绍了六种处理文件上传的方式,包括@RequestParam、@RequestPart、@ModelAttribute、@ModelAttr... 目录方式 1:@RequestParam接收文件后端代码前端代码特点方式 2:@RequestPart接

SpringBoot整合Zuul全过程

《SpringBoot整合Zuul全过程》Zuul网关是微服务架构中的重要组件,具备统一入口、鉴权校验、动态路由等功能,它通过配置文件进行灵活的路由和过滤器设置,支持Hystrix进行容错处理,还提供... 目录Zuul网关的作用Zuul网关的应用1、网关访问方式2、网关依赖注入3、网关启动器4、网关全局变

SpringBoot全局异常拦截与自定义错误页面实现过程解读

《SpringBoot全局异常拦截与自定义错误页面实现过程解读》本文介绍了SpringBoot中全局异常拦截与自定义错误页面的实现方法,包括异常的分类、SpringBoot默认异常处理机制、全局异常拦... 目录一、引言二、Spring Boot异常处理基础2.1 异常的分类2.2 Spring Boot默

基于SpringBoot实现分布式锁的三种方法

《基于SpringBoot实现分布式锁的三种方法》这篇文章主要为大家详细介绍了基于SpringBoot实现分布式锁的三种方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、基于Redis原生命令实现分布式锁1. 基础版Redis分布式锁2. 可重入锁实现二、使用Redisso

SpringBoot的全局异常拦截实践过程

《SpringBoot的全局异常拦截实践过程》SpringBoot中使用@ControllerAdvice和@ExceptionHandler实现全局异常拦截,@RestControllerAdvic... 目录@RestControllerAdvice@ResponseStatus(...)@Except

Springboot配置文件相关语法及读取方式详解

《Springboot配置文件相关语法及读取方式详解》本文主要介绍了SpringBoot中的两种配置文件形式,即.properties文件和.yml/.yaml文件,详细讲解了这两种文件的语法和读取方... 目录配置文件的形式语法1、key-value形式2、数组形式读取方式1、通过@value注解2、通过

Java 接口定义变量的示例代码

《Java接口定义变量的示例代码》文章介绍了Java接口中的变量和方法,接口中的变量必须是publicstaticfinal的,用于定义常量,而方法默认是publicabstract的,必须由实现类... 在 Java 中,接口是一种抽象类型,用于定义类必须实现的方法。接口可以包含常量和方法,但不能包含实例