C++进阶之AVL树+模拟实现

2024-06-02 21:28
文章标签 c++ 进阶 实现 模拟 avl

本文主要是介绍C++进阶之AVL树+模拟实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

目录

一、AVL树的基本概念

1.1 基本概念

二、AVL树的模拟实现

2.1 AVL树节点的定义

2.2 插入操作

2.3 旋转操作

2.4 具体实现


一、AVL树的基本概念

1.1 基本概念

       二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下。因此,两位俄罗斯的数学家G.M.Adelson-Velskii和E.M.Landis在1962年发明了一种解决上述问题的方法:
        当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度。

 一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:

  • 它的左右子树都是AVL树
  • 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)

      如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有n个结点,其高度可保持在O(log n),搜索时间复杂度O(log n)。那么接下来就让我们来模拟实现一下吧。

二、AVL树的模拟实现

2.1 AVL树节点的定义

template<class K,class V>
struct AVLTreeNode {AVLTreeNode<K, V>* _left;AVLTreeNode<K, V>* _right;AVLTreeNode<K, V>* _parent;pair<K, V> _kv;int _bf;AVLTreeNode(const pair<K, V>& kv):_left(nullptr), _right(nullptr), _parent(nullptr), _kv(kv),_bf(0){}
};

这里采用了我们的KV模型进行定义。

2.2 插入操作

        AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。那么AVL树的插入过程可以分为两步:

  1. 按照二叉搜索树的方式插入新节点
  2. 调整节点的平衡因子

       插入很简单,就和我们的搜索二叉树的插入没什么两样,但是由于我们引入了平衡因子,一棵树的平衡可能被破坏,所以我们可能需要对树的结构进行调整。调整的方法等会再说,这里先说如何判断一颗树的平衡被破坏了。

       pCur插入后,pParent的平衡因子一定需要调整,在插入之前,pParent的平衡因子分为三种情况:-1,0, 1, 分以下两种情况:

       1. 如果pCur插入到pParent的左侧,只需给pParent的平衡因子-1即可

       2. 如果pCur插入到pParent的右侧,只需给pParent的平衡因子+1即可

此时:pParent的平衡因子可能有三种情况:0,正负1, 正负2

       1. 如果pParent的平衡因子为0,说明插入之前pParent的平衡因子为正负1,插入后被调整成0,此时满足AVL树的性质,插入成功

       2. 如果pParent的平衡因子为正负1,说明插入前pParent的平衡因子一定为0,插入后被更新成正负1,此时以pParent为根的树的高度增加,需要继续向上更新

       3. 如果pParent的平衡因子为正负2,则pParent的平衡因子违反平衡树的性质,需要对其进行旋转处理

这里用图的形式来给大家描述一下大概的过程:

再看一种情况,只需向上更新一次的情况:

2.3 旋转操作

如果在一棵原本是平衡的AVL树中插入一个新节点,可能造成不平衡,此时必须调整树的结构,使之平衡化。根据节点插入位置的不同,AVL树的旋转分为四种:

  1. 新节点插入较高左子树的左侧---左左:右单旋
  2. 新节点插入较高右子树的右侧---右右:左单旋
  3. 新节点插入较高左子树的右侧---左右:先左单旋再右单旋
  4. 新节点插入较高右子树的左侧---右左:先右单旋再左单旋

2.4 具体实现

基本思路都了解了,那么话不多说,直接开整,这里就只给大家上旋转的代码了,其他部分大家可以先自己尝试写一写,如有问题可以参考http://t.csdnimg.cn/2L1j5这篇文章

void RotateL(Node* parent){Node* subR = parent->_right;//记录根节点的右孩子即旋转节点Node* subRL = subR->_left;//记录旋转节点的左孩子Node* parentParent = parent->_parent;//记录根节点的父节点parent->_right = subRL;//将旋转节点的左孩子给给根节点的右subR->_left = parent;//将原根节点给给旋转节点的左//旋转完成,接下来更改各个节点的连接状态if (subRL)subRL->_parent = parent;parent->_parent = subR;if (_root == parent){_root = subR;subR->_parent = nullptr;}else{subR->_parent = parentParent;if (parentParent->_left == parent)parentParent->_left = subR;elseparentParent->_right = subR;}subR->_bf = parent->_bf = 0;}void RotateR(Node* parent){Node* subL = parent->_left;Node* subLR = subL->_right;Node* parentParent = parent->_parent;parent->_left = subLR;subL->_right = parent;parent->_parent = subL;if (subLR)subLR->_parent = parent;if (_root == parent){_root = subL;subL->_parent = nullptr;}else{subL->_parent = parentParent;if (parentParent->_left == parent)parentParent->_left = subL;elseparentParent->_right = subL;}subL->_bf = parent->_bf = 0;}void RotateLR(Node* parent) {Node* subL = parent->_left;Node* subLR = subL->_right;int bf = subLR->_bf;RotateL(parent->_left);RotateR(parent);if (bf == 0){//本身为新加入节点subL->_bf = subLR->_bf = parent->_bf = 0;}else if (bf == -1){//左子树有新加入节点subL->_bf = subLR->_bf = 0;parent->_bf = 1;}else if (bf == 1){//右子树有新加节点subL->_bf = -1;subLR->_bf = parent->_bf = 0;}else{assert(false);}}void RotateRL(Node* parent){Node* subR = parent->_right;Node* subRL = subR->_left;int bf = subRL->_bf;RotateR(parent->_right);RotateL(parent);if (bf == 0){//本身为新加入节点subR->_bf = subRL->_bf = parent->_bf = 0;}else if (bf == -1){//左子树有新加入节点subR->_bf = 1;subRL->_bf = 0;parent->_bf = 0;}else if (bf == 1){//右子树有新加节点subR->_bf = 0;subRL->_bf = 0;parent->_bf = -1;}else{assert(false);}}

这篇关于C++进阶之AVL树+模拟实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1025126

相关文章

python使用watchdog实现文件资源监控

《python使用watchdog实现文件资源监控》watchdog支持跨平台文件资源监控,可以检测指定文件夹下文件及文件夹变动,下面我们来看看Python如何使用watchdog实现文件资源监控吧... python文件监控库watchdogs简介随着Python在各种应用领域中的广泛使用,其生态环境也

el-select下拉选择缓存的实现

《el-select下拉选择缓存的实现》本文主要介绍了在使用el-select实现下拉选择缓存时遇到的问题及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录项目场景:问题描述解决方案:项目场景:从左侧列表中选取字段填入右侧下拉多选框,用户可以对右侧

深入理解C++ 空类大小

《深入理解C++空类大小》本文主要介绍了C++空类大小,规定空类大小为1字节,主要是为了保证对象的唯一性和可区分性,满足数组元素地址连续的要求,下面就来了解一下... 目录1. 保证对象的唯一性和可区分性2. 满足数组元素地址连续的要求3. 与C++的对象模型和内存管理机制相适配查看类对象内存在C++中,规

Python pyinstaller实现图形化打包工具

《Pythonpyinstaller实现图形化打包工具》:本文主要介绍一个使用PythonPYQT5制作的关于pyinstaller打包工具,代替传统的cmd黑窗口模式打包页面,实现更快捷方便的... 目录1.简介2.运行效果3.相关源码1.简介一个使用python PYQT5制作的关于pyinstall

使用Python实现大文件切片上传及断点续传的方法

《使用Python实现大文件切片上传及断点续传的方法》本文介绍了使用Python实现大文件切片上传及断点续传的方法,包括功能模块划分(获取上传文件接口状态、临时文件夹状态信息、切片上传、切片合并)、整... 目录概要整体架构流程技术细节获取上传文件状态接口获取临时文件夹状态信息接口切片上传功能文件合并功能小

python实现自动登录12306自动抢票功能

《python实现自动登录12306自动抢票功能》随着互联网技术的发展,越来越多的人选择通过网络平台购票,特别是在中国,12306作为官方火车票预订平台,承担了巨大的访问量,对于热门线路或者节假日出行... 目录一、遇到的问题?二、改进三、进阶–展望总结一、遇到的问题?1.url-正确的表头:就是首先ur

C#实现文件读写到SQLite数据库

《C#实现文件读写到SQLite数据库》这篇文章主要为大家详细介绍了使用C#将文件读写到SQLite数据库的几种方法,文中的示例代码讲解详细,感兴趣的小伙伴可以参考一下... 目录1. 使用 BLOB 存储文件2. 存储文件路径3. 分块存储文件《文件读写到SQLite数据库China编程的方法》博客中,介绍了文

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

JAVA利用顺序表实现“杨辉三角”的思路及代码示例

《JAVA利用顺序表实现“杨辉三角”的思路及代码示例》杨辉三角形是中国古代数学的杰出研究成果之一,是我国北宋数学家贾宪于1050年首先发现并使用的,:本文主要介绍JAVA利用顺序表实现杨辉三角的思... 目录一:“杨辉三角”题目链接二:题解代码:三:题解思路:总结一:“杨辉三角”题目链接题目链接:点击这里

基于Python实现PDF动画翻页效果的阅读器

《基于Python实现PDF动画翻页效果的阅读器》在这篇博客中,我们将深入分析一个基于wxPython实现的PDF阅读器程序,该程序支持加载PDF文件并显示页面内容,同时支持页面切换动画效果,文中有详... 目录全部代码代码结构初始化 UI 界面加载 PDF 文件显示 PDF 页面页面切换动画运行效果总结主