生命在于学习——Python人工智能原理(3.1)

2024-06-02 15:44

本文主要是介绍生命在于学习——Python人工智能原理(3.1),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

三、深度学习

在这里插入图片描述

(一)深度学习的概念

1、深度学习的来源

深度学习的概念来源于人工神经网络,所以又称深度神经网络
人工神经网络主要使用计算机的计算单元和存储单元模拟人类大脑神经系统中大量的神经细胞(神经元)通关神经纤维传导并相互协同工作的原理。深度学习在一定程度上等同于多层或者深层神经网络。

2、深度学习的定义

所谓深度是指原始数据进行非线性特征转换的次数,如果把一个表示学习系统看作一个有向图结构,深度也可以看作从输入节点到输出节点所经过的最长路径的长度。这样我们就需要一种学习方法可以从数据中学习一个深度模型,这就是深度学习。
深度学习是机器学习的一个子问题,其主要目的是从数据中自动学习到有效的特征表示。

3、深度学习的分类

在这里插入图片描述

(1)监督学习

将训练样本的数据加入到神经网络的输入端,将期望答案和实际输出作差,可以得到误差信号,通过得到的误差信号调整权值大小,以此来优化模型输出。

(2)无监督学习

不给定数据标签,直接训练数据,模型根据数据特征进行自动学习。
无监督学习算法训练含有很多特征的数据集X,在该数据集上学习出有用的结构性质。在深度学习中,通常学习生成数据集的整个概率分布,显式的如概率估计,隐式的如合成或去噪。

(3)半监督学习

介于有监督和无监督之间,不需要给定具体的数据标签,但需要对神经网络的输出进行评价,以此来调整网络参数。

4、深度学习的常用模型举例

在这里插入图片描述

典型的深度学习模型有卷积神经网络、循环神经网络、长短时记忆网络、深度执行网络模型等。

5、深度学习的步骤

原始数据——底层特征——中层特征——高层特征——预测——结果
其中。底层特征-中层特征-高层特征为表示学习,底层特征-中层特征-高层特征-预测为深度学习。
和浅层学习不同,深度学习需要解决的关键问题是贡献度分配问题,即一个系统中不同的组件或其参数对最终系统输出结果的贡献或影响。

6、深度学习的训练过程

在这里插入图片描述

对深度学习的所有层同时进行训练,复杂度会很高,如果每次只训练一层,偏差就会逐层传递。
总体来说,训练过程分为两步:

(1)使用自下而上的非监督学习

采用无标签或有标签数据分层训练各层参数,这一步可以看成无监督训练过长,或者特征学习过程。
先用数据学习第一层,学习第一层的参数,在学习并得到N-1层后,将N-1的输出作为第N层的输入,训练第N层,从而得到各层的参数。

(2)自顶而下的监督学习

基于(1)中学到的各层参数进一步调整多层模型的参数,这是一个有监督的过程。
第一步类似神经网络的随机初始化初值过程,由于深度学习的第一步不是随机初始化,而是通过学习输入数据的结构得到,因而这个初值更接近全局最优,从而能够取得更好的效果,所以深度学习效果好在很大程度上归功于第一步的特征学习过程。

7、深度学习与浅层学习

在这里插入图片描述

相较于传统的浅层学习,深度学习的不同之处在于:

(1)强调了模型结构的深度

通常有5、6层,甚至十几层的隐层节点。

(2)明确了特征学习的重要性

8、深度学习与传统机器学习

端到端学习,也称端到端训练,是指在学习过程中不进行分模块或分阶段训练,直接优化任务的总体目标,目前大部分采用神经网络模型的深度学习也可以看作一种端到端的学习。
相比传统的机器学习,深度学习有更好的特征学习能力,在传统的机器学习算法中需要手工编码特征,相比之下深度学习对特征的识别由算法自动完成,机器学习的这个处理过程不仅耗时,而且还需要较高的专业知识和一定的人工参与才能完成。而深度学习通过大数据技术直接从数据中自动学习各种特征并进行分类或者识别,做到全自动数据分析。

9、深度学习的发展及重要人物介绍

在这里插入图片描述

(1)反向传播算法

简称BP,是一种监督学习算法,常被用来训练多层感知机。
于1974年,Paul Werbos首次给出了如何训练一般网络的学习算法,而人工神经网络只是其中的特例,直到80年代中期,David Rumelhart、Geoffrey Hinton、RonaldWilliams、David Parker和YannLeCun提出多层网络中的反向传播算法,引起人工神经网络领域研究的第二次热潮。

(2)卷积神经网络

是一种深度学习模型或类似于人工神经网络的多层感知器,常用来分析视觉图像。
现代卷积神经网络的创始人是计算机科学家Xann LeCun,他是第一个通过卷积神经网络在MNIST数据集上解决手写数字问题的人。
严格意义上讲,LeCun是第一个使用误差反向传播训练卷积神经网络架构的人,但他不是第一个发明这个结构的人,福岛博士引入的Neocognitron,是第一个使用卷积和采样的神经网络,也是卷积神经网络的雏形。

这篇关于生命在于学习——Python人工智能原理(3.1)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1024390

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

hdu4407(容斥原理)

题意:给一串数字1,2,......n,两个操作:1、修改第k个数字,2、查询区间[l,r]中与n互质的数之和。 解题思路:咱一看,像线段树,但是如果用线段树做,那么每个区间一定要记录所有的素因子,这样会超内存。然后我就做不来了。后来看了题解,原来是用容斥原理来做的。还记得这道题目吗?求区间[1,r]中与p互质的数的个数,如果不会的话就先去做那题吧。现在这题是求区间[l,r]中与n互质的数的和

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]