Python数据库ORM SQLAlchemy 0.7学习笔记(2) 定义映射

2024-06-02 11:32

本文主要是介绍Python数据库ORM SQLAlchemy 0.7学习笔记(2) 定义映射,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

! 本文可能 超过1年没有更新,今后内容也许不会被维护或者支持,部分内容可能具有时效性,涉及技术细节或者软件使用方面,本人不保证相应的兼容和可操作性。

昨天简单介绍了SQLAlchemy的使用,但是没有能够涉及其最精彩的ORM部分,今天我将简单说明一下,当然主要还是讲解官方文档的内容,由于是学习笔记,有可能存在精简或者自己理解的部分,不做权威依据。

当我们开始使用ORM,一种可配置的结构可以用于描述我们的数据库表,稍后我们定义的类将会被映射到这些表上。当然现代的SQLAlchemy(新版本SQLAlchemy,原文是modern SQLAlchemy)使用Declarative把这两件事一起做了,即允许我们把创建类和描述定义数据库表以及它们之间的映射关系一次搞定。

这段话是什么意思呢?简单来说吧,SQLAlchemy分为Classic (经典模式)和Modern (现代模式),Classic定义数据库表的模式比较传统,需要先描述这个表。

1. Classic 映射

比如以官方文档中的例子,我们拥有表结构如下:

CREATE TABLE [users] ([id]       INTEGER PRIMARY KEY,[name]     TEXT NOT NULL,[fullname] TEXT NOT NULL,[password] TEXT NOT NULL
);

下面我们描述这张表:

from sqlalchemy import Table, MetaData, Column, Integer, Stringmetadata = MetaData()user = Table('users', metadata,Column('id', Integer, primary_key=True),Column('name', String(50)),Column('fullname', String(50)),Column('password', String(12)))

好,这样我们的表算是描述完成了,接下来我们需要定义我们的Python类,比如这样的:

class User(object):def __init__(self, name, fullname, password):self.name = nameself.fullname = fullnameself.password = password

如何让我们定义的类与之前描述的表结构发生映射关系就是我们接下来要做的:

from sqlalchemy.orm import mapper
mapper(User, user)

大家注意到mapper函数,第一个参数是我们类的名称,第二个参数是我们先前描述的表定义。

这就是传统的定义ORM的方法,有关这个方法的更多信息,可以阅读文档Mapper Configuration,以后有机会再和大家详谈。

2. Modern 映射

当大家都乐此不疲的定义描述表,定义类,再映射来实现ORM的时候,SQLAlchemy团队搞出了更简单的映射方法,那就是Modern模式了,即通过定义映射类来一次性完成所有任务。

为了定义的类能够被SQLAlchemy管理,所以引入了Declarative这个概念,也就是说我们所有的类必须是Declarative基类的子类,而这个基类可以通过下面的办法来获取:

from sqlalchemy.ext.declarative import declarative_base
Base = declarative_base()

当然一个程序内,这个基类最好是唯一的,建议存储在全局变量比如Base中供所有映射类使用。

现在通过刚才的代码我们得到了名为Base的基类,通过这个基类我们可以定义N多的映射子类,而这些子类都能被SQLAlchemy Declarative系统管理到。

下面我们还是看刚才的那个users表的例子:

from sqlalchemy import Column, Integer, String
class User(Base):__tablename__ = 'users'id = Column(Integer, primary_key=True)name = Column(String)fullname = Column(String)password = Column(String)def __init__(self, name, fullname, password):self.name = nameself.fullname = fullnameself.password = passworddef __repr__(self):return "<User('%s','%s', '%s')>" % (self.name, self.fullname, self.password)

就这段代码就完成了我们先前在Classic中需要的三步,代码比原先更简洁和容易管理了,同刚才Classic中Table定义的Column,这个代表数据库表中的列,当然Integer和String代表着数据库表的字段类型了。

这样User类就建立起与数据库表的映射,真实表的名字可以使用__tablename__指明,然后是表列的集合,包括idnamefullname以及password,当然想必大家已经知道了,我们通过primary_key=True已经指明id为主键了。当然一些数据库表可能不包含有主键(例如视图View,当然视图也可以被映射),ORM为了能够实际映射表需要至少一个列被定义为主键列。多列,比如复合多主键也能够被很好地映射支持。

大家可能注意到User类中还包含有通常意义上的Python魔术方法,包含__init__()初始化类(构造方法)以及__repr__()字符串化支持方法,当然这些都是可选的,如果需要这个类可以加入程序所需要的任意多方法或者属性,你只要把这个类看作一个普通的Python类就可以了。

当然User类唯一不能马虎的就是必须继承至Base,这个Base就是刚才我们通过declarative_base()生成的类,通过它我们可以接下来让SQLAlchemy Declarative系统管理并操作这些映射类和数据库表。

实际上包括继承的Base类,所有的类都应该是Python的新式类(new style class),关于新式类的更多信息可以参考Python手册。

随着我们的User映射类通过Declarative系统构造成功,我们就拥有了相关的定义信息,比如在Classic定义中介绍的Table()描述,也包含映射到表的类,就是User自身,我们可以通过User.__table__来查看我们的表描述情况:

>>> User.__table__ 
Table('users', MetaData(None),Column('id', Integer(), table=<users>, primary_key=True, nullable=False),Column('name', String(), table=<users>),Column('fullname', String(), table=<users>),Column('password', String(), table=<users>), schema=None)

当然找到描述表的数据结构,也应该能找到mapper,我们的Mapper对象可以通过__mapper__属性来获取,比如这样的:

>>> User.__mapper__ 
<Mapper at 0x...; User>

同样的MetaData可以通过.metadata属性找到。

好啦,下面轻松一下,见证奇迹的时刻,我们需不需要定义创建好实体数据库然后再定义ORM?对于SQLAlchemy来说这些都是小事一桩,其都可以给你一手包办,也就是说你可以完全不必理会数据库,交给SQLAlchemy就可以了,比如通过MetaData.create_all()并将engine参数传入即可(什么是engine?参考我的笔记1),比如通过下面的方式创建我们的users表。

>>> Base.metadata.create_all(engine) 
PRAGMA table_info("users")
()
CREATE TABLE users (id INTEGER NOT NULL,name VARCHAR,fullname VARCHAR,password VARCHAR,PRIMARY KEY (id)
)
()
COMMIT

由于我们开启了engine的echo=True,所以在交互命令下SQLAlchemy把SQL语句也输出了,正好可以检验是否符合我们的要求。

这样简单的create_all()我们就轻松建立起先前ORM映射定义的表啦。

时间不早了,今天先聊到这儿,下次再谈SQLAlchemy的其他特性。

这篇关于Python数据库ORM SQLAlchemy 0.7学习笔记(2) 定义映射的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1023844

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

MySQL数据库宕机,启动不起来,教你一招搞定!

作者介绍:老苏,10余年DBA工作运维经验,擅长Oracle、MySQL、PG、Mongodb数据库运维(如安装迁移,性能优化、故障应急处理等)公众号:老苏畅谈运维欢迎关注本人公众号,更多精彩与您分享。 MySQL数据库宕机,数据页损坏问题,启动不起来,该如何排查和解决,本文将为你说明具体的排查过程。 查看MySQL error日志 查看 MySQL error日志,排查哪个表(表空间

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss