UVA 10458 - Cricket Ranking(容斥原理)

2024-06-01 20:08

本文主要是介绍UVA 10458 - Cricket Ranking(容斥原理),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

UVA 10458 - Cricket Ranking

题目链接

题意:给定k个区间,要求用这些数字范围去组合成n,问有几种组合方式

思路:容斥原理,容斥是这样做:已知n个组成s,不限值个数的话,用隔板法求出情况为C(s + n - 1, n - 1),但是这部分包含了超过了,那么就利用二进制枚举出哪些是超过的,实现把s减去f(i) + 1这样就保证这个位置是超过的,减去这部分后,有多减的在加回来,这就满足了容斥原理的公式,个数为奇数的时候减去,偶数的时候加回

代码:

#include <cstdio>
#include <cstring>
#include <iostream>using namespace std;
typedef long long ll;
const int MAXN = 1005;struct bign {int len;ll num[MAXN];bign () {len = 0;memset(num, 0, sizeof(num));}bign (ll number) {*this = number;}bign (const char* number) {*this = number;}void DelZero ();void Put ();void operator = (ll number);void operator = (char* number);bool operator <  (const bign& b) const;bool operator >  (const bign& b) const { return b < *this; }bool operator <= (const bign& b) const { return !(b < *this); }bool operator >= (const bign& b) const { return !(*this < b); }bool operator != (const bign& b) const { return b < *this || *this < b;}bool operator == (const bign& b) const { return !(b != *this); }void operator ++ ();void operator -- ();bign operator + (const int& b);bign operator + (const bign& b);bign operator - (const int& b);bign operator - (const bign& b);bign operator * (const ll& b);bign operator * (const bign& b);bign operator / (const ll& b);//bign operator / (const bign& b);int operator % (const int& b);
};/*Code*/int k;
long long n, f[10];int bitcount(int x) {return x == 0 ? 0 : bitcount(x>>1) + (x&1);
}bign C(long long n, long long m) {bign ans = 1;for (long long i = 0; i < m; i++)ans = ans * (n - i) / (i + 1);return ans;
}int main() {while (~scanf("%d%lld", &k, &n)) {long long l, r;for (int i = 0; i < k; i++) {scanf("%lld%lld", &l, &r);f[i] = r - l;n -= l;}bign ans1 = 0LL, ans2 = 0LL;for (int i = 0; i < (1<<k); i++) {long long s = n;for (int j = 0; j < k; j++) {if (i&(1<<j)) {s -= f[j] + 1;if (s < 0) break;}}if (s < 0) continue;if (bitcount(i)&1) ans2 = ans2 + C(s + k - 1, k - 1);else ans1 = ans1 + C(s + k - 1, k - 1);}(ans1 - ans2).Put();printf("\n");}return 0;
}/*********************************************/void bign::DelZero () {while (len && num[len-1] == 0)len--;if (len == 0) {num[len++] = 0;}
}void bign::Put () {for (int i = len-1; i >= 0; i--) printf("%lld", num[i]);
}void bign::operator = (char* number) {len = strlen (number);for (int i = 0; i < len; i++)num[i] = number[len-i-1] - '0';DelZero ();
}void bign::operator = (ll number) {len = 0;while (number) {num[len++] = number%10;number /= 10;}DelZero ();
}bool bign::operator < (const bign& b) const {if (len != b.len)return len < b.len;for (int i = len-1; i >= 0; i--)if (num[i] != b.num[i])return num[i] < b.num[i];return false;
}void bign::operator ++ () {int s = 1;for (int i = 0; i < len; i++) {s = s + num[i];num[i] = s % 10;s /= 10;if (!s) break;}while (s) {num[len++] = s%10;s /= 10;}
}void bign::operator -- () {if (num[0] == 0 && len == 1) return;int s = -1;for (int i = 0; i < len; i++) {s = s + num[i];num[i] = (s + 10) % 10;if (s >= 0) break;}DelZero ();
}bign bign::operator + (const int& b) {bign a = b;return *this + a;
}bign bign::operator + (const bign& b) {int bignSum = 0;bign ans;for (int i = 0; i < len || i < b.len; i++) {if (i < len) bignSum += num[i];if (i < b.len) bignSum += b.num[i];ans.num[ans.len++] = bignSum % 10;bignSum /= 10;}while (bignSum) {ans.num[ans.len++] = bignSum % 10;bignSum /= 10;}return ans;
}bign bign::operator - (const int& b) {bign a = b;return *this - a;
}bign bign::operator - (const bign& b) {ll bignSub = 0;bign ans;for (int i = 0; i < len || i < b.len; i++) {bignSub += num[i];if (i < b.len)bignSub -= b.num[i];ans.num[ans.len++] = (bignSub + 10) % 10;if (bignSub < 0) bignSub = -1;else bignSub = 0;}ans.DelZero();return ans;
}bign bign::operator * (const ll& b) {ll bignSum = 0;bign ans;ans.len = len;for (int i = 0; i < len; i++) {bignSum += num[i] * b;ans.num[i] = bignSum % 10;bignSum /= 10;}while (bignSum) {ans.num[ans.len++] = bignSum % 10;bignSum /= 10;}return ans;
}bign bign::operator * (const bign& b) {bign ans;ans.len = 0; for (int i = 0; i < len; i++){  int bignSum = 0;  for (int j = 0; j < b.len; j++){  bignSum += num[i] * b.num[j] + ans.num[i+j];  ans.num[i+j] = bignSum % 10;  bignSum /= 10;}  ans.len = i + b.len;  while (bignSum){  ans.num[ans.len++] = bignSum % 10;  bignSum /= 10;}  }  return ans;
}bign bign::operator / (const ll& b) {bign ans;ll s = 0;for (int i = len-1; i >= 0; i--) {s = s * 10 + num[i];ans.num[i] = s/b;s %= b;}ans.len = len;ans.DelZero();return ans;
}int bign::operator % (const int& b) {bign ans;int s = 0;for (int i = len-1; i >= 0; i--) {s = s * 10 + num[i];ans.num[i] = s/b;s %= b;}return s;
}


这篇关于UVA 10458 - Cricket Ranking(容斥原理)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1021992

相关文章

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

JAVA封装多线程实现的方式及原理

《JAVA封装多线程实现的方式及原理》:本文主要介绍Java中封装多线程的原理和常见方式,通过封装可以简化多线程的使用,提高安全性,并增强代码的可维护性和可扩展性,需要的朋友可以参考下... 目录前言一、封装的目标二、常见的封装方式及原理总结前言在 Java 中,封装多线程的原理主要围绕着将多线程相关的操

kotlin中的模块化结构组件及工作原理

《kotlin中的模块化结构组件及工作原理》本文介绍了Kotlin中模块化结构组件,包括ViewModel、LiveData、Room和Navigation的工作原理和基础使用,本文通过实例代码给大家... 目录ViewModel 工作原理LiveData 工作原理Room 工作原理Navigation 工

Java的volatile和sychronized底层实现原理解析

《Java的volatile和sychronized底层实现原理解析》文章详细介绍了Java中的synchronized和volatile关键字的底层实现原理,包括字节码层面、JVM层面的实现细节,以... 目录1. 概览2. Synchronized2.1 字节码层面2.2 JVM层面2.2.1 ente

MySQL的隐式锁(Implicit Lock)原理实现

《MySQL的隐式锁(ImplicitLock)原理实现》MySQL的InnoDB存储引擎中隐式锁是一种自动管理的锁,用于保证事务在行级别操作时的数据一致性和安全性,本文主要介绍了MySQL的隐式锁... 目录1. 背景:什么是隐式锁?2. 隐式锁的工作原理3. 隐式锁的类型4. 隐式锁的实现与源代码分析4

MySQL中Next-Key Lock底层原理实现

《MySQL中Next-KeyLock底层原理实现》Next-KeyLock是MySQLInnoDB存储引擎中的一种锁机制,结合记录锁和间隙锁,用于高效并发控制并避免幻读,本文主要介绍了MySQL中... 目录一、Next-Key Lock 的定义与作用二、底层原理三、源代码解析四、总结Next-Key L

Spring Cloud Hystrix原理与注意事项小结

《SpringCloudHystrix原理与注意事项小结》本文介绍了Hystrix的基本概念、工作原理以及其在实际开发中的应用方式,通过对Hystrix的深入学习,开发者可以在分布式系统中实现精细... 目录一、Spring Cloud Hystrix概述和设计目标(一)Spring Cloud Hystr

MySQL中的MVCC底层原理解读

《MySQL中的MVCC底层原理解读》本文详细介绍了MySQL中的多版本并发控制(MVCC)机制,包括版本链、ReadView以及在不同事务隔离级别下MVCC的工作原理,通过一个具体的示例演示了在可重... 目录简介ReadView版本链演示过程总结简介MVCC(Multi-Version Concurr