CNN之于CV和NLP

2024-06-01 10:58
文章标签 cv cnn nlp 之于

本文主要是介绍CNN之于CV和NLP,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

自然语言处理是对一维信号(词序列)做操作,计算机视觉是对二维(图像)或三维(视频流)信号做操作。不同:自然语言处理的输入数据通常是离散取值(例如表示一个单词或字母通常表示为词典中的one hot向量),计算机视觉则是连续取值(比如归一化到01之间的灰度值)。

 

为什么CNN用在CV上更得心应手,却不一定适合NLP?要看清这点就要理解CNN的原理。CNN有两个主要特点,区域不变性(location invariance)和组合性(Compositionality)

1. 区域不变性:滤波器在每层的输入向量(图像)上滑动,检测的是局部信息,然后通过pooling取最大值或均值。pooling这步综合了局部特征,失去了每个特征的位置信息。这很适合基于图像的任务,比如要判断一幅图里有没有猫这种生物,你可能不会去关心这只猫出现在图像的哪个区域。但是在NLP里,词语在句子或是段落里出现的位置,顺序,都是很重要的信息。

2. 局部组合性:CNN中,每个滤波器都把较低层的局部特征组合生成较高层的更全局化的特征。这在CV里很好理解,像素组合成边缘,边缘生成形状,最后把各种形状组合起来得到复杂的物体表达。在语言里,当然也有类似的组合关系,但是远不如图像来的直接。而且在图像里,相邻像素必须是相关的,相邻的词语却未必相关。

当然,还有些技术细节,CNN具体应用在CVNLP上会有些不同,就不赘述了。比如,滤波器的大小,在CV里滤波器一般覆盖一个局部的小区域,NLP会覆盖整个词汇向量的宽度,等等。。。那为什么最近很多项目把CNN用在NLP上取得了很好的结果?很多时候,理论上严格正确的模型在实际上不一定比理论不完整的模型更好用。

这篇关于CNN之于CV和NLP的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1020813

相关文章

Python实现NLP的完整流程介绍

《Python实现NLP的完整流程介绍》这篇文章主要为大家详细介绍了Python实现NLP的完整流程,文中的示例代码讲解详细,具有一定的借鉴价值,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 编程安装和导入必要的库2. 文本数据准备3. 文本预处理3.1 小写化3.2 分词(Tokenizatio

深度学习实战:如何利用CNN实现人脸识别考勤系统

1. 何为CNN及其在人脸识别中的应用 卷积神经网络(CNN)是深度学习中的核心技术之一,擅长处理图像数据。CNN通过卷积层提取图像的局部特征,在人脸识别领域尤其适用。CNN的多个层次可以逐步提取面部的特征,最终实现精确的身份识别。对于考勤系统而言,CNN可以自动从摄像头捕捉的视频流中检测并识别出员工的面部。 我们在该项目中采用了 RetinaFace 模型,它基于CNN的结构实现高效、精准的

如何将卷积神经网络(CNN)应用于医学图像分析:从分类到分割和检测的实用指南

引言 在现代医疗领域,医学图像已经成为疾病诊断和治疗规划的重要工具。医学图像的类型繁多,包括但不限于X射线、CT(计算机断层扫描)、MRI(磁共振成像)和超声图像。这些图像提供了对身体内部结构的详细视图,有助于医生在进行准确诊断和制定个性化治疗方案时获取关键的信息。 1. 医学图像分析的挑战 医学图像分析面临诸多挑战,其中包括: 图像数据的复杂性:医学图像通常具有高维度和复杂的结构

从零开始学cv-14:图像边缘检测

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、图像边缘是什么?二、Sobel 算子三、Scharr 算子四、Prewitt算子五、Canny算子 前言 边缘检测是OpenCV中的一个重要组成部分,它用于识别图像中亮度变化显著的点,即边缘。通过边缘检测,我们可以从图像中提取出重要的特征,为后续的图像分析、形状识别和物体跟踪等任务奠定

CNN-LSTM模型中应用贝叶斯推断进行时间序列预测

这篇论文的标题是《在混合CNN-LSTM模型中应用贝叶斯推断进行时间序列预测》,作者是Thi-Lich Nghiem, Viet-Duc Le, Thi-Lan Le, Pierre Maréchal, Daniel Delahaye, Andrija Vidosavljevic。论文发表在2022年10月于越南富国岛举行的国际多媒体分析与模式识别会议(MAPR)上。 摘要部分提到,卷积

从零开始学cv-0:图像处理基础知识

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一,图像分类1.1、模拟图像1.2、数字图像 二、颜色模式(颜色存储)2.1、RGB模式(发光模式)2.2、CMYK模式2.3、HSB模式2.4、Lab模式2.5、位图模式(Bitmap Mode)2.6、灰度模式(Grayscale Mode)2.7、索引颜色模式(Indexed Color Mode)

【python 走进NLP】两两求相似度,得到一条文本和其他文本最大的相似度

应用场景: 一个数据框里面文本,两两求相似度,得到一条文本和其他文本最大的相似度。 content source_id0 丰华股份军阀割据发生的故事大概多少w 11 丰华股份军阀割据发生的故事大概多少 22 丰华股份军阀割据发生的故事大概多少 33 丰华股份军阀割据发生的故事大概多少

【Python 走进NLP】NLP词频统计和处理停用词,可视化

# coding=utf-8import requestsimport sysreload(sys)sys.setdefaultencoding('utf-8')from lxml import etreeimport timetime1=time.time()import bs4import nltkfrom bs4 import BeautifulSoupfrom

【tensorflow CNN】构建cnn网络,识别mnist手写数字识别

#coding:utf8"""构建cnn网络,识别mnistinput conv1 padding max_pool([2,2],strides=[2,2]) conv2 x[-1,28,28,1] 卷积 [5,5,1,32] -> [-1,24,24,32]->[-1,28,

【java 走进NLP】simhash 算法计算两篇文章相似度

python 计算两篇文章的相似度算法simhash见: https://blog.csdn.net/u013421629/article/details/85052915 对长文本 是比较合适的(超过500字以上) 下面贴上java 版本实现: pom.xml 加入依赖 <dependency><groupId>org.jsoup</groupId><artifactId>jsoup</a