基于tensorflow和NasNet的皮肤癌分类项目

2024-06-01 10:28

本文主要是介绍基于tensorflow和NasNet的皮肤癌分类项目,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

数据来源

https://challenge.isic-archive.com/data/#2019

数据划分

写了个脚本划分

for line in open('ISIC/labels.csv').readlines()[1:]:split_line = line.split(',')img_file = split_line[0]benign_malign = split_line[1]# 0.8 for train, 0.1 for test, 0.1 for validationrandom_num = random.random()if random_num < 0.8:location = traintrain_examples += 1elif random_num < 0.9:location = validationvalidation_examples += 1else:location = testtest_examples += 1if int(float(benign_malign)) == 0:shutil.copy('ISIC/images/' + img_file + '.jpg',location + 'benign/' + img_file + '.jpg')elif int(float(benign_malign)) == 1:shutil.copy('ISIC/images/' + img_file + '.jpg',location + 'malignant/' + img_file + '.jpg')print(f'Number of training examples {train_examples}')
print(f'Number of test examples {test_examples}')
print(f'Number of validation examples {validation_examples}')

数据生成模块

train_datagen = ImageDataGenerator(rescale=1.0 / 255,rotation_range=15,zoom_range=(0.95, 0.95),horizontal_flip=True,vertical_flip=True,data_format='channels_last',dtype=tf.float32,
)train_gen = train_datagen.flow_from_directory('data/train/',target_size=(img_height, img_width),batch_size=batch_size,color_mode='rgb',class_mode='binary',shuffle=True,seed=123,
)

 模型加载和运行

由于数据量较大,本次使用NasNet, 来源于nasnet | Kaggle

# NasNet
model = keras.Sequential([hub.KerasLayer(r'C:\\Users\\32573\\Desktop\\tools\py\\cancer_classification_project\\saved_model',trainable=True),layers.Dense(1, activation='sigmoid'),
])
model.compile(optimizer=keras.optimizers.Adam(3e-4),loss=[keras.losses.BinaryCrossentropy(from_logits=False)],metrics=['accuracy']
)model.fit(train_gen,epochs=1,steps_per_epoch=train_examples // batch_size,validation_data=validation_gen,validation_steps=validation_examples // batch_size,
)

运行结果 

 模型其他评估指标

METRICS = [keras.metrics.BinaryAccuracy(name='accuracy'),keras.metrics.Precision(name='precision'),keras.metrics.Recall(name='Recall'),keras.metrics.AUC(name='AUC'),
]

 绘制roc图

def plot_roc(label, data):predictions = model.predict(data)fp, tp, _ = roc_curve(label, predictions)plt.plot(100*fp, 100*tp)plt.xlabel('False Positives [%]')plt.ylabel('True Positives [%]')plt.show()test_labels = np.array([])
num_batches = 0for _, y in test_gen:test_labels = np.append(test_labels, y)num_batches = 1if num_batches == math.ceil(test_examples / batch_size):breakplot_roc(test_labels, test_gen)

这篇关于基于tensorflow和NasNet的皮肤癌分类项目的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1020750

相关文章

Pandas使用AdaBoost进行分类的实现

《Pandas使用AdaBoost进行分类的实现》Pandas和AdaBoost分类算法,可以高效地进行数据预处理和分类任务,本文主要介绍了Pandas使用AdaBoost进行分类的实现,具有一定的参... 目录什么是 AdaBoost?使用 AdaBoost 的步骤安装必要的库步骤一:数据准备步骤二:模型

SpringBoot项目中报错The field screenShot exceeds its maximum permitted size of 1048576 bytes.的问题及解决

《SpringBoot项目中报错ThefieldscreenShotexceedsitsmaximumpermittedsizeof1048576bytes.的问题及解决》这篇文章... 目录项目场景问题描述原因分析解决方案总结项目场景javascript提示:项目相关背景:项目场景:基于Spring

解决Maven项目idea找不到本地仓库jar包问题以及使用mvn install:install-file

《解决Maven项目idea找不到本地仓库jar包问题以及使用mvninstall:install-file》:本文主要介绍解决Maven项目idea找不到本地仓库jar包问题以及使用mvnin... 目录Maven项目idea找不到本地仓库jar包以及使用mvn install:install-file基

springboot项目如何开启https服务

《springboot项目如何开启https服务》:本文主要介绍springboot项目如何开启https服务方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录springboot项目开启https服务1. 生成SSL证书密钥库使用keytool生成自签名证书将

将Java项目提交到云服务器的流程步骤

《将Java项目提交到云服务器的流程步骤》所谓将项目提交到云服务器即将你的项目打成一个jar包然后提交到云服务器即可,因此我们需要准备服务器环境为:Linux+JDK+MariDB(MySQL)+Gi... 目录1. 安装 jdk1.1 查看 jdk 版本1.2 下载 jdk2. 安装 mariadb(my

Node.js 数据库 CRUD 项目示例详解(完美解决方案)

《Node.js数据库CRUD项目示例详解(完美解决方案)》:本文主要介绍Node.js数据库CRUD项目示例详解(完美解决方案),本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考... 目录项目结构1. 初始化项目2. 配置数据库连接 (config/db.js)3. 创建模型 (models/

springboot项目中常用的工具类和api详解

《springboot项目中常用的工具类和api详解》在SpringBoot项目中,开发者通常会依赖一些工具类和API来简化开发、提高效率,以下是一些常用的工具类及其典型应用场景,涵盖Spring原生... 目录1. Spring Framework 自带工具类(1) StringUtils(2) Coll

Spring Boot项目部署命令java -jar的各种参数及作用详解

《SpringBoot项目部署命令java-jar的各种参数及作用详解》:本文主要介绍SpringBoot项目部署命令java-jar的各种参数及作用的相关资料,包括设置内存大小、垃圾回收... 目录前言一、基础命令结构二、常见的 Java 命令参数1. 设置内存大小2. 配置垃圾回收器3. 配置线程栈大小

Spring Boot项目中结合MyBatis实现MySQL的自动主从切换功能

《SpringBoot项目中结合MyBatis实现MySQL的自动主从切换功能》:本文主要介绍SpringBoot项目中结合MyBatis实现MySQL的自动主从切换功能,本文分步骤给大家介绍的... 目录原理解析1. mysql主从复制(Master-Slave Replication)2. 读写分离3.

一文教你如何将maven项目转成web项目

《一文教你如何将maven项目转成web项目》在软件开发过程中,有时我们需要将一个普通的Maven项目转换为Web项目,以便能够部署到Web容器中运行,本文将详细介绍如何通过简单的步骤完成这一转换过程... 目录准备工作步骤一:修改​​pom.XML​​1.1 添加​​packaging​​标签1.2 添加