【C++】77组合

2024-05-31 13:04
文章标签 c++ 组合 77

本文主要是介绍【C++】77组合,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

给定两个整数 n 和 k,返回范围 [1, n] 中所有可能的 k 个数的组合。

你可以按 任何顺序 返回答案。

使用回溯算法。我们可以按照以下步骤来实现:

  1. 创建一个辅助函数 backtrack,用来进行回溯搜索。其中包括当前组合的状态变量 current、起始搜索值 start 和结果集合 result。
  2. 在回溯函数中,如果当前组合的大小等于 k,则将 current 加入到结果集合中。
  3. 否则,在 [start, n] 范围内进行遍历,选择一个数加入到当前组合中,并递归调用 backtrack 函数搜索下一个数字。
  4. 搜索完成后,需要回溯,将当前加入的数移除,继续在下一个位置搜索其他可能的数。
#include <vector>void backtrack(int start, int n, int k, std::vector<int>& current, std::vector<std::vector<int>>& result) {if (current.size() == k) {result.push_back(current);return;}for (int i = start; i <= n; ++i) {current.push_back(i);backtrack(i + 1, n, k, current, result);current.pop_back(); // Backtrack}
}std::vector<std::vector<int>> combine(int n, int k) {std::vector<std::vector<int>> result;std::vector<int> current;backtrack(1, n, k, current, result);return result;
}

时间复杂度分析:

在回溯函数中,进行了一个从 start 到 n 的循环,每个数都尝试加入到当前组合中,并进行递归调用。
对于每个位置,有两种选择:选或者不选,因此总共有 2^k 种可能的组合,其中 k 为要选择的数的个数。
每个组合的生成过程中,需要 O(k) 的时间来复制和移除元素。
因此,总的时间复杂度为 O(2^k * k),其中 k 为要选择的数的个数。

空间复杂度分析:

在递归调用过程中,需要 O(k) 的栈空间来存储当前的组合情况,其中 k 为要选择的数的个数。
存储结果的容器需要额外的 O© 空间来存储所有可能的组合,其中 C 为所有可能的组合数量。
因此,总的空间复杂度为 O(k + C),其中 k 为要选择的数的个数,C 为所有可能的组合数量。
综合来看,给定的组合算法的时间复杂度是指数级别的,取决于要选择的数的个数和范围的大小。而空间复杂度则主要受递归调用和结果集合的影响。

这篇关于【C++】77组合的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1018005

相关文章

【C++ Primer Plus习题】13.4

大家好,这里是国中之林! ❥前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。有兴趣的可以点点进去看看← 问题: 解答: main.cpp #include <iostream>#include "port.h"int main() {Port p1;Port p2("Abc", "Bcc", 30);std::cout <<

C++包装器

包装器 在 C++ 中,“包装器”通常指的是一种设计模式或编程技巧,用于封装其他代码或对象,使其更易于使用、管理或扩展。包装器的概念在编程中非常普遍,可以用于函数、类、库等多个方面。下面是几个常见的 “包装器” 类型: 1. 函数包装器 函数包装器用于封装一个或多个函数,使其接口更统一或更便于调用。例如,std::function 是一个通用的函数包装器,它可以存储任意可调用对象(函数、函数

hdu4869(逆元+求组合数)

//输入n,m,n表示翻牌的次数,m表示牌的数目,求经过n次操作后共有几种状态#include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>#include<map>#include<stdio.h>#include<stdlib.h>#includ

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

06 C++Lambda表达式

lambda表达式的定义 没有显式模版形参的lambda表达式 [捕获] 前属性 (形参列表) 说明符 异常 后属性 尾随类型 约束 {函数体} 有显式模版形参的lambda表达式 [捕获] <模版形参> 模版约束 前属性 (形参列表) 说明符 异常 后属性 尾随类型 约束 {函数体} 含义 捕获:包含零个或者多个捕获符的逗号分隔列表 模板形参:用于泛型lambda提供个模板形参的名

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

【C++高阶】C++类型转换全攻略:深入理解并高效应用

📝个人主页🌹:Eternity._ ⏩收录专栏⏪:C++ “ 登神长阶 ” 🤡往期回顾🤡:C++ 智能指针 🌹🌹期待您的关注 🌹🌹 ❀C++的类型转换 📒1. C语言中的类型转换📚2. C++强制类型转换⛰️static_cast🌞reinterpret_cast⭐const_cast🍁dynamic_cast 📜3. C++强制类型转换的原因📝

C++——stack、queue的实现及deque的介绍

目录 1.stack与queue的实现 1.1stack的实现  1.2 queue的实现 2.重温vector、list、stack、queue的介绍 2.1 STL标准库中stack和queue的底层结构  3.deque的简单介绍 3.1为什么选择deque作为stack和queue的底层默认容器  3.2 STL中对stack与queue的模拟实现 ①stack模拟实现

c++的初始化列表与const成员

初始化列表与const成员 const成员 使用const修饰的类、结构、联合的成员变量,在类对象创建完成前一定要初始化。 不能在构造函数中初始化const成员,因为执行构造函数时,类对象已经创建完成,只有类对象创建完成才能调用成员函数,构造函数虽然特殊但也是成员函数。 在定义const成员时进行初始化,该语法只有在C11语法标准下才支持。 初始化列表 在构造函数小括号后面,主要用于给