光栅幅值细分原理与实现

2024-05-31 01:36

本文主要是介绍光栅幅值细分原理与实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文介绍光栅幅值细分原理与实现。

光栅是工业测量领域中常见的传感器,如下图。主要厂家有雷尼绍,海德汉,配套的光栅读数头有模拟信号的,也有直接细分输出数字脉冲的,本文的细分针对模拟信号,即有正弦信号,余弦信号,Index信号输出的光栅读数头。光栅细分方法有很多(如锁相倍频细分法,幅值细分法等),本文介绍常用的幅值细分法。

1.细分原理

由于常见的光栅栅距为20um,40um,对应一个正弦或余弦周期输出,分辨率太低,因此需要采用相应的细分方法,将分辨率调整到合适的值,如采用1000细分,可将栅距为20um的光栅尺,分辨率调高到20/1000um=0.02um。
幅值细分法是根据莫尔信号幅值和相位的对应关系,通过对幅值大小的分割判断来实现莫尔信号的相位细分。传统的幅值细分法利用电压比较器组将幅值信号与参考电压信号比较来输出细分脉冲,由于光栅传感器输出的莫尔信号波形近似正弦信号,如下图,在不同的相位处所对应的灵敏度不同,当信号幅值接近峰值时需要较大的相位变化才能引起微小的幅值变化,因此容易造成细分误差。

为了克服莫尔信号灵敏度不等造成细分误差的缺点,通常采用构造新函数的方法,以提高信号的线性度,这里采用正切函数构造的方法。

1)正切函数构造原理

设光栅传感器输出的2路莫尔信号为:

\left\{\begin{matrix} u_{1}=A\cdot \sin \theta \\ u_{2}=A\cdot \cos \theta \end{matrix}\right.

\left [ 0,\frac{\pi }{2} \right ]区间来考察,可构造如下正切函数:

u_{3}= \left\{\begin{matrix} \tan \theta =\frac{\left | A\cdot \sin \theta \right | }{\left | A\cdot \cos \theta \right | }, \left | A\cdot \sin \theta \right | \leq \left | A\cdot \cos \theta \right | \\ \cot \theta =\frac{\left | A\cdot \cos \theta \right | }{\left | A\cdot \sin \theta \right | }, \left | A\cdot \sin \theta \right | \geq \left | A\cdot \cos \theta \right | \end{matrix}\right.

其中,\theta为光栅信号相位

而以\left [ \frac{\pi }{2}, \pi\right ]区间来考察,原来在\left [ 0,\frac{\pi }{2} \right ]区间的A\cdot \sin \theta在此区间就变成了A\cdot \cos \theta(取绝对值的原因),而原来在\left [ 0,\frac{\pi }{2} \right ]区间的A\cdot \cos \theta在此区间就变成了A\cdot \sin \theta(取绝对值的原因),仍然可以按上述u_{3}构造正切函数。其他区间依次类推。

构造的正切函数u_{3}波形如下图。

新函数u_{3}近似三角波,是一个周期函数(周期为\frac{\pi }{2}),包含一半正切函数波形,一半余切函数波形。采用这种方法的线性度高,且不需要确定莫尔信号的峰值大小,不易受信号衰减的影响,因此,幅值细分法得到了广泛的应用。

2)区间划分

由于不同的区间采用的函数是不一样的,为了便于信号处理,将整个周期划分为8个区间,当前信号所处的区间可由u_{1}u_{2}极性,u_{1}u_{2}大小关系来进行确定。区间划分如下表。

区间u_{1}极性u_{2}极性\left |u_{1} \right |\left |u_{2} \right |大小比较
1++\left |u_{1} \right |< \left |u_{2} \right |
2++\left |u_{1} \right |> \left |u_{2} \right |
3+-\left |u_{1} \right |> \left |u_{2} \right |
4+-\left |u_{1} \right |< \left |u_{2} \right |
5--\left |u_{1} \right |< \left |u_{2} \right |
6--\left |u_{1} \right |> \left |u_{2} \right |
7-+\left |u_{1} \right |> \left |u_{2} \right |
8-+\left |u_{1} \right |< \left |u_{2} \right |

3)区间细分数确定

设N为一个周期内总细分数。为了方便计算,我们将8个区间的计算统一映射到第1个区间,得到在不同区间的细分数值,如下表。

区间细分数
1\frac{N\cdot \arctan \frac{\left | u_{1} \right | }{\left | u_{2} \right |}}{2\cdot \pi }
2\frac{N}{4}-\frac{N\cdot \arctan \frac{\left | u_{2} \right | }{\left | u_{1} \right |}}{2\cdot \pi }
3\frac{N}{4}+\frac{N\cdot \arctan \frac{\left | u_{2} \right | }{\left | u_{1} \right |}}{2\cdot \pi }
4\frac{N}{2}-\frac{N\cdot \arctan \frac{\left | u_{1} \right | }{\left | u_{2} \right |}}{2\cdot \pi }
5\frac{N}{2}+\frac{N\cdot \arctan \frac{\left | u_{1} \right | }{\left | u_{2} \right |}}{2\cdot \pi }
6\frac{3\cdot N}{4}-\frac{N\cdot \arctan \frac{\left | u_{2} \right | }{\left | u_{1} \right |}}{2\cdot \pi }
7\frac{3\cdot N}{4}+\frac{N\cdot \arctan \frac{\left | u_{2} \right | }{\left | u_{1} \right |}}{2\cdot \pi }
8N-\frac{N\cdot \arctan \frac{\left | u_{1} \right | }{\left | u_{2} \right |}}{2\cdot \pi }

其中,

a)u_{1}u_{2}为各自区间的电压值

b)区间可由“2)区间划分”确定

2.细分实现

清楚原理,细分实现就比较简单了,细分实现框图如下图。

总的流程如下:

1)FPGA/DSP通过同步高速A/D采样,获取sin信号和cos信号幅值

2)FPGA/DSP通过区间划分表获取当前区间

3)FPGA/DSP通过当前区间,计算当前细分数

4)当信号经过一个周期后,总细分数加1

5)输出当前细分值

3.细分误差来源

造成细分误差的来源有很多,主要有以下几种:

1)直流误差。光栅输出正弦信号和余弦信号直流偏置不一样,造成A/D采样幅值不一样,从而造成计算相位时的误差。

2)幅值误差。光栅输出正弦信号和余弦信号幅值不一样,造成A/D采样幅值不一样,从而造成计算相位时的误差。

3)正交误差。光栅输出正弦信号和余弦信号有相位差,在计算相位时出现误差,可以通过示波器的李沙育图的圆度来判断。

可以通过误差补偿的方法减小误差,误差补偿顺序应遵循先进行直流补偿,再进行幅值补偿,最后进行正交补偿。

本文介绍了光栅幅值细分原理与实现。

这篇关于光栅幅值细分原理与实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1017206

相关文章

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

前端原生js实现拖拽排课效果实例

《前端原生js实现拖拽排课效果实例》:本文主要介绍如何实现一个简单的课程表拖拽功能,通过HTML、CSS和JavaScript的配合,我们实现了课程项的拖拽、放置和显示功能,文中通过实例代码介绍的... 目录1. 效果展示2. 效果分析2.1 关键点2.2 实现方法3. 代码实现3.1 html部分3.2

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

java父子线程之间实现共享传递数据

《java父子线程之间实现共享传递数据》本文介绍了Java中父子线程间共享传递数据的几种方法,包括ThreadLocal变量、并发集合和内存队列或消息队列,并提醒注意并发安全问题... 目录通过 ThreadLocal 变量共享数据通过并发集合共享数据通过内存队列或消息队列共享数据注意并发安全问题总结在 J

SpringBoot+MyBatis-Flex配置ProxySQL的实现步骤

《SpringBoot+MyBatis-Flex配置ProxySQL的实现步骤》本文主要介绍了SpringBoot+MyBatis-Flex配置ProxySQL的实现步骤,文中通过示例代码介绍的非常详... 目录 目标 步骤 1:确保 ProxySQL 和 mysql 主从同步已正确配置ProxySQL 的