光栅幅值细分原理与实现

2024-05-31 01:36

本文主要是介绍光栅幅值细分原理与实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文介绍光栅幅值细分原理与实现。

光栅是工业测量领域中常见的传感器,如下图。主要厂家有雷尼绍,海德汉,配套的光栅读数头有模拟信号的,也有直接细分输出数字脉冲的,本文的细分针对模拟信号,即有正弦信号,余弦信号,Index信号输出的光栅读数头。光栅细分方法有很多(如锁相倍频细分法,幅值细分法等),本文介绍常用的幅值细分法。

1.细分原理

由于常见的光栅栅距为20um,40um,对应一个正弦或余弦周期输出,分辨率太低,因此需要采用相应的细分方法,将分辨率调整到合适的值,如采用1000细分,可将栅距为20um的光栅尺,分辨率调高到20/1000um=0.02um。
幅值细分法是根据莫尔信号幅值和相位的对应关系,通过对幅值大小的分割判断来实现莫尔信号的相位细分。传统的幅值细分法利用电压比较器组将幅值信号与参考电压信号比较来输出细分脉冲,由于光栅传感器输出的莫尔信号波形近似正弦信号,如下图,在不同的相位处所对应的灵敏度不同,当信号幅值接近峰值时需要较大的相位变化才能引起微小的幅值变化,因此容易造成细分误差。

为了克服莫尔信号灵敏度不等造成细分误差的缺点,通常采用构造新函数的方法,以提高信号的线性度,这里采用正切函数构造的方法。

1)正切函数构造原理

设光栅传感器输出的2路莫尔信号为:

\left\{\begin{matrix} u_{1}=A\cdot \sin \theta \\ u_{2}=A\cdot \cos \theta \end{matrix}\right.

\left [ 0,\frac{\pi }{2} \right ]区间来考察,可构造如下正切函数:

u_{3}= \left\{\begin{matrix} \tan \theta =\frac{\left | A\cdot \sin \theta \right | }{\left | A\cdot \cos \theta \right | }, \left | A\cdot \sin \theta \right | \leq \left | A\cdot \cos \theta \right | \\ \cot \theta =\frac{\left | A\cdot \cos \theta \right | }{\left | A\cdot \sin \theta \right | }, \left | A\cdot \sin \theta \right | \geq \left | A\cdot \cos \theta \right | \end{matrix}\right.

其中,\theta为光栅信号相位

而以\left [ \frac{\pi }{2}, \pi\right ]区间来考察,原来在\left [ 0,\frac{\pi }{2} \right ]区间的A\cdot \sin \theta在此区间就变成了A\cdot \cos \theta(取绝对值的原因),而原来在\left [ 0,\frac{\pi }{2} \right ]区间的A\cdot \cos \theta在此区间就变成了A\cdot \sin \theta(取绝对值的原因),仍然可以按上述u_{3}构造正切函数。其他区间依次类推。

构造的正切函数u_{3}波形如下图。

新函数u_{3}近似三角波,是一个周期函数(周期为\frac{\pi }{2}),包含一半正切函数波形,一半余切函数波形。采用这种方法的线性度高,且不需要确定莫尔信号的峰值大小,不易受信号衰减的影响,因此,幅值细分法得到了广泛的应用。

2)区间划分

由于不同的区间采用的函数是不一样的,为了便于信号处理,将整个周期划分为8个区间,当前信号所处的区间可由u_{1}u_{2}极性,u_{1}u_{2}大小关系来进行确定。区间划分如下表。

区间u_{1}极性u_{2}极性\left |u_{1} \right |\left |u_{2} \right |大小比较
1++\left |u_{1} \right |< \left |u_{2} \right |
2++\left |u_{1} \right |> \left |u_{2} \right |
3+-\left |u_{1} \right |> \left |u_{2} \right |
4+-\left |u_{1} \right |< \left |u_{2} \right |
5--\left |u_{1} \right |< \left |u_{2} \right |
6--\left |u_{1} \right |> \left |u_{2} \right |
7-+\left |u_{1} \right |> \left |u_{2} \right |
8-+\left |u_{1} \right |< \left |u_{2} \right |

3)区间细分数确定

设N为一个周期内总细分数。为了方便计算,我们将8个区间的计算统一映射到第1个区间,得到在不同区间的细分数值,如下表。

区间细分数
1\frac{N\cdot \arctan \frac{\left | u_{1} \right | }{\left | u_{2} \right |}}{2\cdot \pi }
2\frac{N}{4}-\frac{N\cdot \arctan \frac{\left | u_{2} \right | }{\left | u_{1} \right |}}{2\cdot \pi }
3\frac{N}{4}+\frac{N\cdot \arctan \frac{\left | u_{2} \right | }{\left | u_{1} \right |}}{2\cdot \pi }
4\frac{N}{2}-\frac{N\cdot \arctan \frac{\left | u_{1} \right | }{\left | u_{2} \right |}}{2\cdot \pi }
5\frac{N}{2}+\frac{N\cdot \arctan \frac{\left | u_{1} \right | }{\left | u_{2} \right |}}{2\cdot \pi }
6\frac{3\cdot N}{4}-\frac{N\cdot \arctan \frac{\left | u_{2} \right | }{\left | u_{1} \right |}}{2\cdot \pi }
7\frac{3\cdot N}{4}+\frac{N\cdot \arctan \frac{\left | u_{2} \right | }{\left | u_{1} \right |}}{2\cdot \pi }
8N-\frac{N\cdot \arctan \frac{\left | u_{1} \right | }{\left | u_{2} \right |}}{2\cdot \pi }

其中,

a)u_{1}u_{2}为各自区间的电压值

b)区间可由“2)区间划分”确定

2.细分实现

清楚原理,细分实现就比较简单了,细分实现框图如下图。

总的流程如下:

1)FPGA/DSP通过同步高速A/D采样,获取sin信号和cos信号幅值

2)FPGA/DSP通过区间划分表获取当前区间

3)FPGA/DSP通过当前区间,计算当前细分数

4)当信号经过一个周期后,总细分数加1

5)输出当前细分值

3.细分误差来源

造成细分误差的来源有很多,主要有以下几种:

1)直流误差。光栅输出正弦信号和余弦信号直流偏置不一样,造成A/D采样幅值不一样,从而造成计算相位时的误差。

2)幅值误差。光栅输出正弦信号和余弦信号幅值不一样,造成A/D采样幅值不一样,从而造成计算相位时的误差。

3)正交误差。光栅输出正弦信号和余弦信号有相位差,在计算相位时出现误差,可以通过示波器的李沙育图的圆度来判断。

可以通过误差补偿的方法减小误差,误差补偿顺序应遵循先进行直流补偿,再进行幅值补偿,最后进行正交补偿。

本文介绍了光栅幅值细分原理与实现。

这篇关于光栅幅值细分原理与实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1017206

相关文章

AJAX请求上传下载进度监控实现方式

《AJAX请求上传下载进度监控实现方式》在日常Web开发中,AJAX(AsynchronousJavaScriptandXML)被广泛用于异步请求数据,而无需刷新整个页面,:本文主要介绍AJAX请... 目录1. 前言2. 基于XMLHttpRequest的进度监控2.1 基础版文件上传监控2.2 增强版多

Redis分片集群的实现

《Redis分片集群的实现》Redis分片集群是一种将Redis数据库分散到多个节点上的方式,以提供更高的性能和可伸缩性,本文主要介绍了Redis分片集群的实现,具有一定的参考价值,感兴趣的可以了解一... 目录1. Redis Cluster的核心概念哈希槽(Hash Slots)主从复制与故障转移2.

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

使用Python实现一键隐藏屏幕并锁定输入

《使用Python实现一键隐藏屏幕并锁定输入》本文主要介绍了使用Python编写一个一键隐藏屏幕并锁定输入的黑科技程序,能够在指定热键触发后立即遮挡屏幕,并禁止一切键盘鼠标输入,这样就再也不用担心自己... 目录1. 概述2. 功能亮点3.代码实现4.使用方法5. 展示效果6. 代码优化与拓展7. 总结1.

Mybatis 传参与排序模糊查询功能实现

《Mybatis传参与排序模糊查询功能实现》:本文主要介绍Mybatis传参与排序模糊查询功能实现,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、#{ }和${ }传参的区别二、排序三、like查询四、数据库连接池五、mysql 开发企业规范一、#{ }和${ }传参的

Docker镜像修改hosts及dockerfile修改hosts文件的实现方式

《Docker镜像修改hosts及dockerfile修改hosts文件的实现方式》:本文主要介绍Docker镜像修改hosts及dockerfile修改hosts文件的实现方式,具有很好的参考价... 目录docker镜像修改hosts及dockerfile修改hosts文件准备 dockerfile 文

基于SpringBoot+Mybatis实现Mysql分表

《基于SpringBoot+Mybatis实现Mysql分表》这篇文章主要为大家详细介绍了基于SpringBoot+Mybatis实现Mysql分表的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录基本思路定义注解创建ThreadLocal创建拦截器业务处理基本思路1.根据创建时间字段按年进

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态