8086 汇编笔记(二):寄存器(内存访问)

2024-05-30 04:04

本文主要是介绍8086 汇编笔记(二):寄存器(内存访问),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、内存中字的存储

字单元的概念:字单元,即存放一个字型数据(16 位)的内存单元,由两个地址连续的内存单元组成

由上一章学习可知:高地址内存单元中存放字型数据的高位字节,低地址内存单元中存放字型数据的低位字节

现在有以下几个问题

(1) 0 地址单元中存放的字节型数据是多少?                                        20H

(2) 0 地址字单元中存放的字型数据是多少?                                        4E20H

(3) 2 地址单元中存放的字节型数据是多少?                                        12H

(4) 2 地址字单元中存放的字型数据是多少?                                        0012H

(5) 1 地址字单元中存放的字型数据是多少?                                        4E12H

注意:1 地址字单元,即起始地址为 1 的字单元,它由 1 号单元和 2 号单元组成 

二、DS 和 [address] 

8086 CPU 中有一个 DS 寄存器,通常用来存放要访问数据的段地址。比如我们要读取 10000H 单元的内容,可以用如下的程序段进行:

mov bx,1000H
mov ds,bx
mov al,[0]

上面的 3 条指令将 10000H(1000:0) 中的数据读到 al 中

8086 CPU 自动取 ds 中的数据为内存单元的段地址 ,“[…]”表示一个内存单元,“[…]”中的 0 表示内存单元的偏移地址

另一个案例,如果将 10000H 单元的内容送入 al 中呢

mov [0],al

三、字的传送

前面我们用 mov 指令在寄存器和内存之间进行字节型数据的传送(8 位)

只要在 mov 指令中给出 16 位的寄存器就可以进行 16 位数据的传送了

四、数据段

比如,将 123B0H~123B9H 的内存单元定义为数据段。现在要累加这个数据段中的前3 个单元中的数据,代码如下:

mov ax,123BH
mov ds,ax
mov al,0
add al,[0]
add al,[1]
add al,[2]
…………………………

答案解析: 

五、栈

六、CPU 提供的栈机制

8086 CPU 提供入栈和出栈指令,最基本的两个是 PUSH(入栈) 和 POP(出栈)。 

8086 CPU 的入栈和出栈操作都是以字为单位进行的

请看以下指令

mov ax,0123H
push ax
mov bx,2266H
push bx
mov cx,1122H
push cx
pop ax
pop bx
pop cX

指令执行过程如下

8086 CPU 中,有两个寄存器,段寄存器SS和寄存器SP,栈顶的段地址存放在 SS 中,偏移地址存放在 SP 中

任意时刻,SS:SP 指向栈顶元素

pop 指令执行过程

七、栈顶超界问题

8086 CPU 不保证我们对栈的操作不会超界

总结:我们在编程的时候要自己操心栈顶超界的问题,要根据可能用到的最大栈空间,来安排栈的大小,防止入栈的数据太多而导致的超界;执行出操作的时候也要注意,以防栈空的时候继续出栈而导致的超界。

八、push、pop 指令

push 寄存器
push 段寄存器
push 内存单元pop 寄存器
pop 段寄存器
pop 内存单元

编程:

将 10000H~1000FH 这段空间当作栈,初始状态栈是空的,将 AX、BX、DS
中的数据入栈 

mov ax,1000H    ;设置栈的段地址,SS=1000H,不能直接向段寄存器SS中送入数据,所以用 ax 中转
mov ss,ax
mov sp,0010H
push ax
push bx
push cx

编程:

将 10000H~1000FH 这段空间当作栈,初始状态栈是空的,设置 AX-001AH,BX-001BH:将 AX、BX 中的数据入栈,然后将 AX、BX 清零,从栈中恢复 AX、BX 原来的内容

mov ax,1000H
mov ss,ax
mov sp,0010H    ;初始化栈顶
mov ax,001AH
mov bx,001BH
push ax
push bx
mov ax,0
mov bx,0
pop bx
pop ax

mov ax,1000H
mov ss,ax
mov sp,0002H
mov ax,2266H
push ax

push ax 是入栈指令,它将在栈顶之上压入新的数据。一定要注意:它的执行过程是,先将记录栈顶偏移地址的 SP 寄存器中的内容减 2,使得 SS:SP 指向新的栈顶单元,然后再将寄存器中的数据送入 SS:SP 指向的新的栈顶单元 

原因:因为 8086 处理器是从高地址到低地址增长栈

九、栈段

如果将 10000H~IFFFFH 这段空间当作栈段,初始状态是空的,此时,SS=1000H,SP=? 

栈段基址和栈指针的初始值

  • 栈段寄存器(SS)确定栈段的基址。给定SS = 1000H,那么栈段基址为10000H。
  • 栈指针(SP)指示当前栈顶的偏移量。对于一个空栈,SP的初始值应指向栈段的末尾,以便第一次 PUSH 操作能够在栈的顶部进行。

栈指针初始值的计算

8086处理器的栈段从高地址向低地址增长。即:

  • 栈顶在栈段的高地址。
  • 栈底在栈段的低地址。

为了确保栈初始为空,我们需要将SP设置为指向栈段的最高地址的下一个字(word)。

栈段范围是从10000H到1FFFFH,总大小为FFFFH字节。栈段最高地址是1FFFFH,如果初始SP指向1FFFFH,那么第一个 PUSH 操作会将数据放在1FFFDH和1FFFEH(SP减2后)的位置。因此,我们设置SP为栈段的最大容量加1,即栈段结束地址的下一个位置。

具体步骤

  1. 计算栈段大小

    • 栈段基址 = 10000H
    • 栈段结束 = 1FFFFH
    • 栈段大小 = 1FFFFH - 10000H + 1 = FFFFH + 1 = 10000H
  2. 设置初始SP

    • 初始SP = 栈段大小 = 10000H

由于8086处理器中的栈操作将SP减2后再存储数据,这样设置SP可以保证在第一次PUSH操作时SP减2后刚好在1FFFEH和1FFFDH位置存储数据。

这篇关于8086 汇编笔记(二):寄存器(内存访问)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1015530

相关文章

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

使用Dify访问mysql数据库详细代码示例

《使用Dify访问mysql数据库详细代码示例》:本文主要介绍使用Dify访问mysql数据库的相关资料,并详细讲解了如何在本地搭建数据库访问服务,使用ngrok暴露到公网,并创建知识库、数据库访... 1、在本地搭建数据库访问的服务,并使用ngrok暴露到公网。#sql_tools.pyfrom

Javascript访问Promise对象返回值的操作方法

《Javascript访问Promise对象返回值的操作方法》这篇文章介绍了如何在JavaScript中使用Promise对象来处理异步操作,通过使用fetch()方法和Promise对象,我们可以从... 目录在Javascript中,什么是Promise1- then() 链式操作2- 在之后的代码中使

Redis 内存淘汰策略深度解析(最新推荐)

《Redis内存淘汰策略深度解析(最新推荐)》本文详细探讨了Redis的内存淘汰策略、实现原理、适用场景及最佳实践,介绍了八种内存淘汰策略,包括noeviction、LRU、LFU、TTL、Rand... 目录一、 内存淘汰策略概述二、内存淘汰策略详解2.1 ​noeviction(不淘汰)​2.2 ​LR

Golang基于内存的键值存储缓存库go-cache

《Golang基于内存的键值存储缓存库go-cache》go-cache是一个内存中的key:valuestore/cache库,适用于单机应用程序,本文主要介绍了Golang基于内存的键值存储缓存库... 目录文档安装方法示例1示例2使用注意点优点缺点go-cache 和 Redis 缓存对比1)功能特性

如何使用Docker部署FTP和Nginx并通过HTTP访问FTP里的文件

《如何使用Docker部署FTP和Nginx并通过HTTP访问FTP里的文件》本文介绍了如何使用Docker部署FTP服务器和Nginx,并通过HTTP访问FTP中的文件,通过将FTP数据目录挂载到N... 目录docker部署FTP和Nginx并通过HTTP访问FTP里的文件1. 部署 FTP 服务器 (

Go使用pprof进行CPU,内存和阻塞情况分析

《Go使用pprof进行CPU,内存和阻塞情况分析》Go语言提供了强大的pprof工具,用于分析CPU、内存、Goroutine阻塞等性能问题,帮助开发者优化程序,提高运行效率,下面我们就来深入了解下... 目录1. pprof 介绍2. 快速上手:启用 pprof3. CPU Profiling:分析 C

golang内存对齐的项目实践

《golang内存对齐的项目实践》本文主要介绍了golang内存对齐的项目实践,内存对齐不仅有助于提高内存访问效率,还确保了与硬件接口的兼容性,是Go语言编程中不可忽视的重要优化手段,下面就来介绍一下... 目录一、结构体中的字段顺序与内存对齐二、内存对齐的原理与规则三、调整结构体字段顺序优化内存对齐四、内

本地搭建DeepSeek-R1、WebUI的完整过程及访问

《本地搭建DeepSeek-R1、WebUI的完整过程及访问》:本文主要介绍本地搭建DeepSeek-R1、WebUI的完整过程及访问的相关资料,DeepSeek-R1是一个开源的人工智能平台,主... 目录背景       搭建准备基础概念搭建过程访问对话测试总结背景       最近几年,人工智能技术

Ollama整合open-webui的步骤及访问

《Ollama整合open-webui的步骤及访问》:本文主要介绍如何通过源码方式安装OpenWebUI,并详细说明了安装步骤、环境要求以及第一次使用时的账号注册和模型选择过程,需要的朋友可以参考... 目录安装环境要求步骤访问选择PjrIUE模型开始对话总结 安装官方安装地址:https://docs.