C 文件读写详解(ofstream,ifstream,fstream)

2024-05-30 03:18

本文主要是介绍C 文件读写详解(ofstream,ifstream,fstream),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在看C++编程思想中,每个练习基本都是使用ofstream,ifstream,fstream,以前粗略知道其用法和含义,在看了几位大牛的博文后,进行整理和总结:

这里主要是讨论fstream的内容:

#include <fstream>
ofstream         //文件写操作 内存写入存储设备 
ifstream         //文件读操作,存储设备读区到内存中
fstream          //读写操作,对打开的文件可进行读写操作 
1.打开文件

在fstream类中,成员函数open()实现打开文件的操作,从而将数据流和文件进行关联,通过ofstream,ifstream,fstream对象进行对文件的读写操作

函数:open()

public member function
 
void open ( const char * filename,
            ios_base::openmode mode = ios_base::in | ios_base::out );
 
void open(const wchar_t *_Filename,
        ios_base::openmode mode= ios_base::in | ios_base::out,
        int prot = ios_base::_Openprot);
 
参数: filename   操作文件名
           mode        打开文件的方式

           prot         打开文件的属性                            //基本很少用到,在查看资料时,发现有两种方式

打开文件的方式在ios类(所以流式I/O的基类)中定义,有如下几种方式:

ios::in    为输入(读)而打开文件
ios::out    为输出(写)而打开文件
ios::ate    初始位置:文件尾
ios::app    所有输出附加在文件末尾
ios::trunc    如果文件已存在则先删除该文件
ios::binary    二进制方式
这些方式是能够进行组合使用的,以“或”运算(“|”)的方式:例如
ofstream out;
out.open("Hello.txt", ios::in|ios::out|ios::binary)                 //根据自己需要进行适当的选取
打开文件的属性同样在ios类中也有定义:
0    普通文件,打开操作
1    只读文件
2    隐含文件
4    系统文件
对于文件的属性也可以使用“或”运算和“+”进行组合使用,这里就不做说明了。
很多程序中,可能会碰到ofstream out("Hello.txt"), ifstream in("..."),fstream foi("...")这样的的使用,并没有显式的去调用open()函数就进行文件的操作,直接调用了其默认的打开方式,因为在stream类的构造函数中调用了open()函数,并拥有同样的构造函数,所以在这里可以直接使用流对象进行文件的操作,默认方式如下:

ofstream out("...", ios::out);
ifstream in("...", ios::in);
fstream foi("...", ios::in|ios::out);
 
当使用默认方式进行对文件的操作时,你可以使用成员函数is_open()对文件是否打开进行验证
2.关闭文件

当文件读写操作完成之后,我们必须将文件关闭以使文件重新变为可访问的。成员函数close(),它负责将缓存中的数据排放出来并关闭文件。这个函数一旦被调用,原先的流对象就可以被用来打开其它的文件了,这个文件也就可以重新被其它的进程所访问了。为防止流对象被销毁时还联系着打开的文件,析构函数将会自动调用关闭函数close。

3.文本文件的读写

类ofstream, ifstream 和fstream 是分别从ostream, istream 和iostream 中引申而来的。这就是为什么 fstream 的对象可以使用其父类的成员来访问数据。

一般来说,我们将使用这些类与同控制台(console)交互同样的成员函数(cin 和 cout)来进行输入输出。如下面的例题所示,我们使用重载的插入操作符<<:

     // writing on a text file
    #include <fiostream.h>
    int main () {
        ofstream out("out.txt");
        if (out.is_open()) 
       {
            out << "This is a line.\n";
            out << "This is another line.\n";
            out.close();
        }
        return 0;
    }
   //结果: 在out.txt中写入:
   This is a line.
   This is another line 
从文件中读入数据也可以用与 cin>>的使用同样的方法:

 // reading a text file
    #include <iostream.h>
    #include <fstream.h>
    #include <stdlib.h>
    
    int main () {
        char buffer[256];
        ifstream in("test.txt");
        if (! in.is_open())
        { cout << "Error opening file"; exit (1); }
        while (!in.eof() )
        {
            in.getline (buffer,100);
            cout << buffer << endl;
        }
        return 0;
    }
    //结果 在屏幕上输出
     This is a line.
     This is another line
上面的例子读入一个文本文件的内容,然后将它打印到屏幕上。注意我们使用了一个新的成员函数叫做eof ,它是ifstream 从类 ios 中继承过来的,当到达文件末尾时返回true 。

状态标志符的验证(Verification of state flags)
除了eof()以外,还有一些验证流的状态的成员函数(所有都返回bool型返回值):

bad()
如果在读写过程中出错,返回 true 。例如:当我们要对一个不是打开为写状态的文件进行写入时,或者我们要写入的设备没有剩余空间的时候。

fail()
除了与bad() 同样的情况下会返回 true 以外,加上格式错误时也返回true ,例如当想要读入一个整数,而获得了一个字母的时候。

eof()
如果读文件到达文件末尾,返回true。

good()
这是最通用的:如果调用以上任何一个函数返回true 的话,此函数返回 false 。

要想重置以上成员函数所检查的状态标志,你可以使用成员函数clear(),没有参数。


获得和设置流指针(get and put stream pointers)
所有输入/输出流对象(i/o streams objects)都有至少一个流指针:

ifstream, 类似istream, 有一个被称为get pointer的指针,指向下一个将被读取的元素。
ofstream, 类似 ostream, 有一个指针 put pointer ,指向写入下一个元素的位置。
fstream, 类似 iostream, 同时继承了get 和 put
我们可以通过使用以下成员函数来读出或配置这些指向流中读写位置的流指针:

tellg() 和 tellp()
这两个成员函数不用传入参数,返回pos_type 类型的值(根据ANSI-C++ 标准) ,就是一个整数,代表当前get 流指针的位置 (用tellg) 或 put 流指针的位置(用tellp).

seekg() 和seekp()
这对函数分别用来改变流指针get 和put的位置。两个函数都被重载为两种不同的原型:

seekg ( pos_type position );
seekp ( pos_type position );
使用这个原型,流指针被改变为指向从文件开始计算的一个绝对位置。要求传入的参数类型与函数 tellg 和tellp 的返回值类型相同。

seekg ( off_type offset, seekdir direction );
seekp ( off_type offset, seekdir direction );
使用这个原型可以指定由参数direction决定的一个具体的指针开始计算的一个位移(offset)。它可以是:

ios::beg    从流开始位置计算的位移
ios::cur    从流指针当前位置开始计算的位移
ios::end    从流末尾处开始计算的位移
流指针 get 和 put 的值对文本文件(text file)和二进制文件(binary file)的计算方法都是不同的,因为文本模式的文件中某些特殊字符可能被修改。由于这个原因,建议对以文本文件模式打开的文件总是使用seekg 和 seekp的第一种原型,而且不要对tellg 或 tellp 的返回值进行修改。对二进制文件,你可以任意使用这些函数,应该不会有任何意外的行为产生。

以下例子使用这些函数来获得一个二进制文件的大小:

 // obtaining file size
    #include <iostream.h>
    #include <fstream.h>
    
    const char * filename = "test.txt";
    
    int main () {
        long l,m;
        ifstream in(filename, ios::in|ios::binary);
        l = in.tellg();
        in.seekg (0, ios::end);
        m = in.tellg();
        in.close();
        cout << "size of " << filename;
        cout << " is " << (m-l) << " bytes.\n";
        return 0;
    }
   
   //结果:
   size of example.txt is 40 bytes.

4.二进制文件
在二进制文件中,使用<< 和>>,以及函数(如getline)来操作符输入和输出数据,没有什么实际意义,虽然它们是符合语法的。

文件流包括两个为顺序读写数据特殊设计的成员函数:write 和 read。第一个函数 (write) 是ostream 的一个成员函数,都是被ofstream所继承。而read 是istream 的一个成员函数,被ifstream 所继承。类 fstream 的对象同时拥有这两个函数。它们的原型是:

write ( char * buffer, streamsize size );
read ( char * buffer, streamsize size );
这里 buffer 是一块内存的地址,用来存储或读出数据。参数size 是一个整数值,表示要从缓存(buffer)中读出或写入的字符数。


// reading binary file
    #include <iostream>
    #include <fstream.h>
    
    const char * filename = "test.txt";
    
    int main () {
        char * buffer;
        long size;
        ifstream in (filename, ios::in|ios::binary|ios::ate);
        size = in.tellg();
        in.seekg (0, ios::beg);
        buffer = new char [size];
        in.read (buffer, size);
        in.close();
        
        cout << "the complete file is in a buffer";
        
        delete[] buffer;
        return 0;
    }
    //运行结果:
    The complete file is in a buffer

5.缓存和同步(Buffers and Synchronization)
当我们对文件流进行操作的时候,它们与一个streambuf 类型的缓存(buffer)联系在一起。这个缓存(buffer)实际是一块内存空间,作为流(stream)和物理文件的媒介。例如,对于一个输出流, 每次成员函数put (写一个单个字符)被调用,这个字符不是直接被写入该输出流所对应的物理文件中的,而是首先被插入到该流的缓存(buffer)中。

当缓存被排放出来(flush)时,它里面的所有数据或者被写入物理媒质中(如果是一个输出流的话),或者简单的被抹掉(如果是一个输入流的话)。这个过程称为同步(synchronization),它会在以下任一情况下发生:

当文件被关闭时: 在文件被关闭之前,所有还没有被完全写出或读取的缓存都将被同步。
当缓存buffer 满时:缓存Buffers 有一定的空间限制。当缓存满时,它会被自动同步。
控制符明确指明:当遇到流中某些特定的控制符时,同步会发生。这些控制符包括:flush 和endl。
明确调用函数sync(): 调用成员函数sync() (无参数)可以引发立即同步。这个函数返回一个int 值,等于-1 表示流没有联系的缓存或操作失败。

注:转载仅作为笔记使用,如有侵权请联系删除。

这篇关于C 文件读写详解(ofstream,ifstream,fstream)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1015428

相关文章

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

10. 文件的读写

10.1 文本文件 操作文件三大类: ofstream:写操作ifstream:读操作fstream:读写操作 打开方式解释ios::in为了读文件而打开文件ios::out为了写文件而打开文件,如果当前文件存在则清空当前文件在写入ios::app追加方式写文件ios::trunc如果文件存在先删除,在创建ios::ate打开文件之后令读写位置移至文件尾端ios::binary二进制方式

OpenHarmony鸿蒙开发( Beta5.0)无感配网详解

1、简介 无感配网是指在设备联网过程中无需输入热点相关账号信息,即可快速实现设备配网,是一种兼顾高效性、可靠性和安全性的配网方式。 2、配网原理 2.1 通信原理 手机和智能设备之间的信息传递,利用特有的NAN协议实现。利用手机和智能设备之间的WiFi 感知订阅、发布能力,实现了数字管家应用和设备之间的发现。在完成设备间的认证和响应后,即可发送相关配网数据。同时还支持与常规Sof

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

K8S(Kubernetes)开源的容器编排平台安装步骤详解

K8S(Kubernetes)是一个开源的容器编排平台,用于自动化部署、扩展和管理容器化应用程序。以下是K8S容器编排平台的安装步骤、使用方式及特点的概述: 安装步骤: 安装Docker:K8S需要基于Docker来运行容器化应用程序。首先要在所有节点上安装Docker引擎。 安装Kubernetes Master:在集群中选择一台主机作为Master节点,安装K8S的控制平面组件,如AP

【STM32】SPI通信-软件与硬件读写SPI

SPI通信-软件与硬件读写SPI 软件SPI一、SPI通信协议1、SPI通信2、硬件电路3、移位示意图4、SPI时序基本单元(1)开始通信和结束通信(2)模式0---用的最多(3)模式1(4)模式2(5)模式3 5、SPI时序(1)写使能(2)指定地址写(3)指定地址读 二、W25Q64模块介绍1、W25Q64简介2、硬件电路3、W25Q64框图4、Flash操作注意事项软件SPI读写W2

嵌入式Openharmony系统构建与启动详解

大家好,今天主要给大家分享一下,如何构建Openharmony子系统以及系统的启动过程分解。 第一:OpenHarmony系统构建      首先熟悉一下,构建系统是一种自动化处理工具的集合,通过将源代码文件进行一系列处理,最终生成和用户可以使用的目标文件。这里的目标文件包括静态链接库文件、动态链接库文件、可执行文件、脚本文件、配置文件等。      我们在编写hellowor

LabVIEW FIFO详解

在LabVIEW的FPGA开发中,FIFO(先入先出队列)是常用的数据传输机制。通过配置FIFO的属性,工程师可以在FPGA和主机之间,或不同FPGA VIs之间进行高效的数据传输。根据具体需求,FIFO有多种类型与实现方式,包括目标范围内FIFO(Target-Scoped)、DMA FIFO以及点对点流(Peer-to-Peer)。 FIFO类型 **目标范围FIFO(Target-Sc

019、JOptionPane类的常用静态方法详解

目录 JOptionPane类的常用静态方法详解 1. showInputDialog()方法 1.1基本用法 1.2带有默认值的输入框 1.3带有选项的输入对话框 1.4自定义图标的输入对话框 2. showConfirmDialog()方法 2.1基本用法 2.2自定义按钮和图标 2.3带有自定义组件的确认对话框 3. showMessageDialog()方法 3.1

脏页的标记方式详解

脏页的标记方式 一、引言 在数据库系统中,脏页是指那些被修改过但还未写入磁盘的数据页。为了有效地管理这些脏页并确保数据的一致性,数据库需要对脏页进行标记。了解脏页的标记方式对于理解数据库的内部工作机制和优化性能至关重要。 二、脏页产生的过程 当数据库中的数据被修改时,这些修改首先会在内存中的缓冲池(Buffer Pool)中进行。例如,执行一条 UPDATE 语句修改了某一行数据,对应的缓