本文主要是介绍⌈ 传知代码 ⌋ YOLOv9最新最全代码复现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
💛前情提要💛
本文是传知代码平台
中的相关前沿知识与技术的分享~
接下来我们即将进入一个全新的空间,对技术有一个全新的视角~
本文所涉及所有资源均在传知代码平台可获取
以下的内容一定会让你对AI 赋能时代
有一个颠覆性的认识哦!!!
以下内容干货满满,跟上步伐吧~
📌导航小助手📌
- 💡本章重点
- 🍞一. 概述
- 🍞二. YOLOv9模型概述
- 🍞三. 环境搭建及训练推理
- 🍞四. 总结和展望
- 🍞五.参考链接
- 🫓总结
💡本章重点
- YOLOv9最新最全代码复现
🍞一. 概述
在目标检测领域,YOLO系列始终是速度与准确性的标杆。最新进展的YOLOv9,在《YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information》一文中展示了其性能的进一步提升。特别值得一提的是,即使在未采用Transformer结构的情况下,相较于RT-DETR、Yplov8等采用Transformer结构的模型,YOLOv9展现出了更为卓越的性能。本篇文章旨在详尽介绍YOLOv9的复现过程,包括环境配置、数据准备、模型训练与评估等关键步骤。该论文由YOLOv4、YOLOv7的作者王建尧博士撰写,对于目标检测领域的爱好者和研究者而言,无疑是一篇值得深入阅读的佳作。
🍞二. YOLOv9模型概述
YOLOv9沿袭了YOLO系列一贯的完全卷积结构,通过引入“Programmable Gradient Information”技术,增强了模型学习目标特征的灵活性,使其在多个标准数据集上实现了最佳状态(SOTA)。尤其在MS COCO数据集上,YOLOv9不同版本的模型在多项性能指标上均实现了显著提升。
模型框架图
-
YOLOv9的模型框架设计体现了其对效率和性能的双重追求。核心改进包括:
深度可编程特征提取器:YOLOv9采用了先进的深度可编程特征提取器,这使得模型能够根据不同的检测任务自动调整其结构和参数,从而提高学习效率和适应性。 -
有序列表增强特征金字塔网络(FPN):为了提升对小物体的检测能力,YOLOv9对特征金字塔网络的设计进行了增强,通过更有效的跨尺度连接和特征融合机制,增强了模型对于不同尺寸目标的识别精度。
-
有序列表多尺度训练和推理:YOLOv9实现了在训练和推理阶段的多尺度处理能力,通过动态调整输入图像的尺寸,使模型能够更加鲁棒地处理各种分辨率的图像,进一步提升了模型的泛化能力。
有序列表这些创新不仅提升了YOLOv9在目标检测领域的性能,也为未来的研究和应用提供了新的思路和可能性。
🍞三. 环境搭建及训练推理
环境配置
复现YOLOv9需要首先准备适宜的开发环境。我们推荐使用AutoDL平台,借助我已经准备好的环境镜像,可以免去繁琐的环境配置和数据集准备工作。
镜像信息详见附件
通过以下步骤可快速搭建:
- 克隆官方代码库:
git clone https://github.com/WongKinYiu/yolov9.git
cd yolov9
- 安装必要的Python依赖:
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple/
数据集准备
使用官方提供的脚本scripts/get_coco.sh下载并准备MS COCO数据集。该脚本会自动下载并解压数据集及标注文件。需要确保数据集目录结构正确,以便YOLOv9能正确读取数据。
bash scripts/get_coco.sh
训练过程
YOLOv9的训练支持单卡和多卡配置。以下是单卡训练的一个示例命令:
python train_dual.py --workers 8 --device 0 --batch 16 --data data/coco.yaml --img 640 --cfg models/detect/yolov9.yaml --weights '' --name yolov9 --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15
多卡训练能够显著提升训练速度和效率,但对硬件资源的要求更高。由于训练数据量庞大,此处将训练轮次调整为1轮,在配置有4090 GPU的环境下,预计训练时间接近1小时。
测试和评估
使用训练好的模型(也可以用镜像放置在ckpt文件夹下的模型)进行测试和评估,可以通过以下命令执行:
python val_dual.py --data data/coco.yaml --img 640 --batch 32 --conf 0.001 --iou 0.7 --device 0 --weights './yolov9-c.pt' --save-json --name yolov9_c_640_val
实践应用
YOLOv9可用于图片和视频的目标检测,以下是测试单张图片的命令示例:
python detect.py --weights ./ckpt/yolov9-c.pt --conf 0.25 --img-size 1024 768 --source infer/images/horses.jpg --device 0
🍞四. 总结和展望
通过复现YOLOv9,我们不仅深入了解了其核心技术和实现方法,还体验了从环境配置到模型训练、评估的整个过程。YOLOv9在目标检测领域的高适用性和优异性能,使其成为未来研究和应用的重要基石。随着技术的进一步发展,期待YOLOv9在更多场景下的应用和优化。
🍞五.参考链接
-
YOLOv9 GitHub仓库:链接
-
YOLOv9 论文:链接
🫓总结
综上,我们基本了解了“一项全新的技术啦” 🍭 ~~
恭喜你的内功又双叒叕得到了提高!!!
感谢你们的阅读😆
后续还会继续更新💓,欢迎持续关注📌哟~
💫如果有错误❌,欢迎指正呀💫
✨如果觉得收获满满,可以点点赞👍支持一下哟~✨
【传知科技 – 了解更多新知识】
这篇关于⌈ 传知代码 ⌋ YOLOv9最新最全代码复现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!