⌈ 传知代码 ⌋ YOLOv9最新最全代码复现

2024-05-29 23:12

本文主要是介绍⌈ 传知代码 ⌋ YOLOv9最新最全代码复现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

💛前情提要💛

本文是传知代码平台中的相关前沿知识与技术的分享~

接下来我们即将进入一个全新的空间,对技术有一个全新的视角~

本文所涉及所有资源均在传知代码平台可获取

以下的内容一定会让你对AI 赋能时代有一个颠覆性的认识哦!!!

以下内容干货满满,跟上步伐吧~


📌导航小助手📌

  • 💡本章重点
  • 🍞一. 概述
  • 🍞二. YOLOv9模型概述
  • 🍞三. 环境搭建及训练推理
  • 🍞四. 总结和展望
  • 🍞五.参考链接
  • 🫓总结


💡本章重点

  • YOLOv9最新最全代码复现

🍞一. 概述

在目标检测领域,YOLO系列始终是速度与准确性的标杆。最新进展的YOLOv9,在《YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information》一文中展示了其性能的进一步提升。特别值得一提的是,即使在未采用Transformer结构的情况下,相较于RT-DETR、Yplov8等采用Transformer结构的模型,YOLOv9展现出了更为卓越的性能。本篇文章旨在详尽介绍YOLOv9的复现过程,包括环境配置、数据准备、模型训练与评估等关键步骤。该论文由YOLOv4、YOLOv7的作者王建尧博士撰写,对于目标检测领域的爱好者和研究者而言,无疑是一篇值得深入阅读的佳作。

在这里插入图片描述


🍞二. YOLOv9模型概述

YOLOv9沿袭了YOLO系列一贯的完全卷积结构,通过引入“Programmable Gradient Information”技术,增强了模型学习目标特征的灵活性,使其在多个标准数据集上实现了最佳状态(SOTA)。尤其在MS COCO数据集上,YOLOv9不同版本的模型在多项性能指标上均实现了显著提升。

模型框架图

  1. YOLOv9的模型框架设计体现了其对效率和性能的双重追求。核心改进包括:
    深度可编程特征提取器:YOLOv9采用了先进的深度可编程特征提取器,这使得模型能够根据不同的检测任务自动调整其结构和参数,从而提高学习效率和适应性。

  2. 有序列表增强特征金字塔网络(FPN):为了提升对小物体的检测能力,YOLOv9对特征金字塔网络的设计进行了增强,通过更有效的跨尺度连接和特征融合机制,增强了模型对于不同尺寸目标的识别精度。

  3. 有序列表多尺度训练和推理:YOLOv9实现了在训练和推理阶段的多尺度处理能力,通过动态调整输入图像的尺寸,使模型能够更加鲁棒地处理各种分辨率的图像,进一步提升了模型的泛化能力。

有序列表这些创新不仅提升了YOLOv9在目标检测领域的性能,也为未来的研究和应用提供了新的思路和可能性。

在这里插入图片描述


🍞三. 环境搭建及训练推理

环境配置

复现YOLOv9需要首先准备适宜的开发环境。我们推荐使用AutoDL平台,借助我已经准备好的环境镜像,可以免去繁琐的环境配置和数据集准备工作。
镜像信息详见附件

通过以下步骤可快速搭建:

  • 克隆官方代码库:
git clone https://github.com/WongKinYiu/yolov9.git
cd yolov9
  • 安装必要的Python依赖:
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple/

数据集准备

使用官方提供的脚本scripts/get_coco.sh下载并准备MS COCO数据集。该脚本会自动下载并解压数据集及标注文件。需要确保数据集目录结构正确,以便YOLOv9能正确读取数据。

bash scripts/get_coco.sh

训练过程

YOLOv9的训练支持单卡和多卡配置。以下是单卡训练的一个示例命令:

python train_dual.py --workers 8 --device 0 --batch 16 --data data/coco.yaml --img 640 --cfg models/detect/yolov9.yaml --weights '' --name yolov9 --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15

多卡训练能够显著提升训练速度和效率,但对硬件资源的要求更高。由于训练数据量庞大,此处将训练轮次调整为1轮,在配置有4090 GPU的环境下,预计训练时间接近1小时。

测试和评估

使用训练好的模型(也可以用镜像放置在ckpt文件夹下的模型)进行测试和评估,可以通过以下命令执行:

python val_dual.py --data data/coco.yaml --img 640 --batch 32 --conf 0.001 --iou 0.7 --device 0 --weights './yolov9-c.pt' --save-json --name yolov9_c_640_val

实践应用

YOLOv9可用于图片和视频的目标检测,以下是测试单张图片的命令示例:

python detect.py --weights ./ckpt/yolov9-c.pt --conf 0.25 --img-size 1024 768 --source infer/images/horses.jpg --device 0

在这里插入图片描述


🍞四. 总结和展望

通过复现YOLOv9,我们不仅深入了解了其核心技术和实现方法,还体验了从环境配置到模型训练、评估的整个过程。YOLOv9在目标检测领域的高适用性和优异性能,使其成为未来研究和应用的重要基石。随着技术的进一步发展,期待YOLOv9在更多场景下的应用和优化。


🍞五.参考链接

  • YOLOv9 GitHub仓库:链接

  • YOLOv9 论文:链接


🫓总结

综上,我们基本了解了“一项全新的技术啦” 🍭 ~~

恭喜你的内功又双叒叕得到了提高!!!

感谢你们的阅读😆

后续还会继续更新💓,欢迎持续关注📌哟~

💫如果有错误❌,欢迎指正呀💫

✨如果觉得收获满满,可以点点赞👍支持一下哟~✨

【传知科技 – 了解更多新知识】

在这里插入图片描述

这篇关于⌈ 传知代码 ⌋ YOLOv9最新最全代码复现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1014905

相关文章

SpringCloud集成AlloyDB的示例代码

《SpringCloud集成AlloyDB的示例代码》AlloyDB是GoogleCloud提供的一种高度可扩展、强性能的关系型数据库服务,它兼容PostgreSQL,并提供了更快的查询性能... 目录1.AlloyDBjavascript是什么?AlloyDB 的工作原理2.搭建测试环境3.代码工程1.

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python

Java中ArrayList的8种浅拷贝方式示例代码

《Java中ArrayList的8种浅拷贝方式示例代码》:本文主要介绍Java中ArrayList的8种浅拷贝方式的相关资料,讲解了Java中ArrayList的浅拷贝概念,并详细分享了八种实现浅... 目录引言什么是浅拷贝?ArrayList 浅拷贝的重要性方法一:使用构造函数方法二:使用 addAll(

JAVA利用顺序表实现“杨辉三角”的思路及代码示例

《JAVA利用顺序表实现“杨辉三角”的思路及代码示例》杨辉三角形是中国古代数学的杰出研究成果之一,是我国北宋数学家贾宪于1050年首先发现并使用的,:本文主要介绍JAVA利用顺序表实现杨辉三角的思... 目录一:“杨辉三角”题目链接二:题解代码:三:题解思路:总结一:“杨辉三角”题目链接题目链接:点击这里

SpringBoot使用注解集成Redis缓存的示例代码

《SpringBoot使用注解集成Redis缓存的示例代码》:本文主要介绍在SpringBoot中使用注解集成Redis缓存的步骤,包括添加依赖、创建相关配置类、需要缓存数据的类(Tes... 目录一、创建 Caching 配置类二、创建需要缓存数据的类三、测试方法Spring Boot 熟悉后,集成一个外

轻松掌握python的dataclass让你的代码更简洁优雅

《轻松掌握python的dataclass让你的代码更简洁优雅》本文总结了几个我在使用Python的dataclass时常用的技巧,dataclass装饰器可以帮助我们简化数据类的定义过程,包括设置默... 目录1. 传统的类定义方式2. dataclass装饰器定义类2.1. 默认值2.2. 隐藏敏感信息

opencv实现像素统计的示例代码

《opencv实现像素统计的示例代码》本文介绍了OpenCV中统计图像像素信息的常用方法和函数,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 统计像素值的基本信息2. 统计像素值的直方图3. 统计像素值的总和4. 统计非零像素的数量

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

Spring Boot 中整合 MyBatis-Plus详细步骤(最新推荐)

《SpringBoot中整合MyBatis-Plus详细步骤(最新推荐)》本文详细介绍了如何在SpringBoot项目中整合MyBatis-Plus,包括整合步骤、基本CRUD操作、分页查询、批... 目录一、整合步骤1. 创建 Spring Boot 项目2. 配置项目依赖3. 配置数据源4. 创建实体类

IDEA常用插件之代码扫描SonarLint详解

《IDEA常用插件之代码扫描SonarLint详解》SonarLint是一款用于代码扫描的插件,可以帮助查找隐藏的bug,下载并安装插件后,右键点击项目并选择“Analyze”、“Analyzewit... 目录SonajavascriptrLint 查找隐藏的bug下载安装插件扫描代码查看结果总结Sona