扎气球最高分-第13届蓝桥杯选拔赛Python真题精选

2024-05-29 21:52

本文主要是介绍扎气球最高分-第13届蓝桥杯选拔赛Python真题精选,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

[导读]:超平老师的Scratch蓝桥杯真题解读系列在推出之后,受到了广大老师和家长的好评,非常感谢各位的认可和厚爱。作为回馈,超平老师计划推出《Python蓝桥杯真题解析100讲》,这是解读系列的第74讲。

扎气球最高分,本题是2021年11月27日举办的第13届蓝桥杯青少组Python编程选拔赛真题编程部分第5题。题目要求对于给定的n个排成一排的气球,将所有气球扎破能够得到的最高分数。

先来看看题目的要求吧。

一.题目说明

编程实现:

小明去游乐场玩飞镖扎气球的游戏,一共有n个气球,依次排成一行,每个气球上有一个数字,表示这个气球的分值。

游戏计分规则:

1、戳破1个气球,将获得其本身及左右相邻气球,共三个分值相乘的分数;

2、如果戳破的气球左边或右边没有气球,则获得其本身及相邻气球,共两个分值相乘的分数;如果被戳破的气球左边和右边都没有气球(是最后一个被戳破的气球),则这个气球本身的分值作为分数;

3、已经被戳破的气球不再计算。

飞镖数量不限,可以任意选择顺序戳破气球,根据计分规则,争取使得游戏最后得分最高。

例如:一共有3个气球,分值分别为2,4,6。

若想获得最高得分:

1). 先戳破4,得分为2 x 4 x 6 = 48;

2). 再戳破2,得分为2 x 6 = 12,累计得分60;

3). 再戳破6,得分为6,累计得分66;

最后总得分为66,为最高得分。

输入描述:

输入n个正整数,表示气球的分值,且正整数之间以一个英文逗号隔开

输出描述:

输出正整数,表示戳破所有气球后获得的最高得分

样例输入:

2,4,6

样例输出:

66

二.思路分析

这是一道动态规划算法题,涉及的知识点包括循环、列表和动态规划等。

这是一个求最值问题,对于最值问题,常见的实现方案有枚举算法、贪心算法、递归算法、回溯算法和动态规划等。

那么你知道本题属于哪种类型呢?

实际上,这是典型的区间DP问题,区间DP问题通常涉及一个列表或数组,需要对其某些子区间进行操作,并通过这些操作的结果来求解整个列表或数组的某些性质或最优值。

区间DP的基本思想是通过定义二维的DP状态数组dp[i][j],表示从序列的第i个元素到第j个元素(即区间[i, j]的最优解,例如最小/最大的某个值)。然后,通过考虑如何将大区间分解成较小的区间,并利用这些较小区间的最优解来构造大区间的最优解,来进行状态转移。

对于动态规划问题,核心点有如下4个:

  • 定义dp数组

  • 初始状态

  • 状态转移方程

  • 遍历顺序

接下来,我们逐一分析这4个核心要素。

1. 定义dp数组

由于这是一个区间DP问题,因此dp数组是一个二维列表,即dp[i][j],表示扎破从i到j之间所有的气球的最高得分。

此时,有一个问题需要明确,这里的i和j是否也包含呢?

我们看一组实际的数据,假设有4个气球,分值为3, 2, 4, 6,如图:

图片

在计算最高分的时候,还需要考虑气球是否处于最左边和最右边,代码比较繁琐。

可以考虑在左右两边增加两个虚拟气球,其分值为1,如图:

图片

如此一来,所有的黄色气球都处于中间位置,再也不需要考虑边界问题了。

当然,这也让我们进一步明确了dp[i][j]的含义,它表示的是扎破i到j之间所有气球的最高得分。

对于上面的4个气球来说,最后的结果是dp[0][5],表示从0~5之间所有的气球,不包括0和5本身,因为这两个气球是虚拟的,根本不存在。

可以绘制表格如下:

图片

最右上角的单元格dp[0][5]就是最终要计算的结果,实际上,所谓的动态规划,其实就是一个填表的过程。

2. 初始状态

所谓初始状态就是最简单的情况,对于戳气球问题而言,最简单的情况就是没有气球,此时得分为0。

对应到dp[i][j]数组,就是当j - i <= 1,即i和j两者之间没有气球可扎了,当然也就没有分数了。

对应的dp表格如下:

图片

这里将处在对角线偏右上的单元格设置为0,即:

dp[0][1] = dp[1][2] = dp[2][3] = dp[3][4] = dp[4][5]= 0

对于dp表格,我们要计算的是右上方的单元格,左下方的单元格可以忽略不计。

3. 状态转移方程

对于动态规划问题,状态转移方程是重点,也是难点,这里的状态转移方程又该如何确定呢?

还是以上面的数据为例,我们只需要分析最后戳破哪个气球的过程,4只气球可以分四种情况来考虑。

1). 最后戳第一只气球

最后戳破的气球分值为3,如图所示:

图片

这相当于把dp[0][5]拆分成两个子区间,分别是dp[0][1]和dp[1][5],戳破当前气球的得分为1 * 3 * 1,所以:

dp[0][5]= dp[0][1] + dp[1][5] + 3

2). 最后戳第二只气球

最后戳破的气球分值为2,如图所示:

图片

这相当于把dp[0][5]拆分成两个子区间,分别是dp[0][2]和dp[2][5],戳破当前气球的得分为1 * 2 * 1,所以:

dp[0][5]= dp[0][2] + dp[2][5] + 2

3). 最后戳第三只气球

最后戳破的气球分值为4,如图所示:

图片

这相当于把dp[0][5]拆分成两个子区间,分别是dp[0][3]和dp[3][5],戳破当前气球的得分为1 * 4 * 1,所以:

dp[0][5]= dp[0][3] + dp[3][5] + 4

4). 最后戳第四只气球

最后戳破的气球分值为6,如图所示:

图片

这相当于把dp[0][5]拆分成两个子区间,分别是dp[0][4]和dp[4][5],戳破当前气球的得分为1 * 6 * 1,所以:

dp[0][5]= dp[0][4] + dp[4][5] + 6

到底哪一种情况得分最高呢,其实就是取最大值的问题了。

你看到这其中的规律了吗?

实际上就是在i和j之间找分割点k,将dp[i][j]拆分成两个子区间dp[i][k]和dp[k][j],如图所示:

图片

对于每个分割点来说,左边区间的最大分值是dp[i][k],右边区间的最大分值是dp[k][j],加上本次戳破气球的分数p[i] * p[k] * p[j],这里的列表p保存的是每个气球的分值,包括左右两端的虚拟气球。

因此,状态转移方程如下:

dp[i][j] = max(  dp[i][j],   dp[i][k] + dp[k][j] + p[i] * p[j] * p[k])

这意味着,我们需要使用循环枚举i到j之间的每个分割点k,计算其最大分值,然后将最大值作为dp[i][j]的结果。

4. 遍历顺序

对于二维列表dp[i][j]来说,常见的遍历顺序是从上到下,从左到右。但是对于区间DP来说,不能采取这种遍历顺序。

我们还是看图说话吧,以计算dp[2][5]为例,它的分割点k有两个。

当k = 3时,计算如下:

dp[2][5] = dp[2][3] + dp[3][5] + p[2]* p[3] * p[5]

对应的DP表格如图:

图片

当k= 4时,计算如下:

dp[2][5] = dp[2][4] + dp[4][5] + p[2]* p[4] * p[5]

对应的DP表格如图:

图片

相信你已经发现了,在计算dp[2][5]的时候,它可以通过dp[2][3] + dp[3][5]计算出来,也可以通过dp[2][4] + dp[4][5]计算出来。

很显然,dp[2][3]、dp[3][5]、dp[2][4]、dp[4][5]这些单元格都在dp[2][5]的左方和下方,这就意味着不能使用传统的从上到下、从左到右。

针对这种情况,我们可以有两种遍历方式,一是斜线遍历,如图:

图片

二是从下到上,从左到右,如图:

图片

相对来说,使用第二种遍历方式更为简单一些。

思路有了,接下来,我们就进入具体的编程实现环节。

三.编程实现

根据上面的思路分析,我们编写程序如下:

图片

代码不多,说明4点:

1). pts表示输入的气球分值,左右各增加了一个分值为1的气球,这里直接使用列表相加的运算,非常方便;

2). 二维dp列表行和列都是n + 2,初始值为0,这里使用了列表推导式;

3). i表示行,从下到上,初始值是n -1,终点是0,j表示列,自左至右,初始值是i  + 1,终点是n + 1;

4). k表示分割点,起始值是k+1,终点是j - 1。

至此,整个程序就全部完成了,你可以输入不同的数据来测试效果啦。

四.总结与思考

本题代码在10行左右,涉及到的知识点包括:

  • 循环语句,尤其是嵌套循环;

  • 列表的操作;

  • 动态规划算法;

作为本次测评的最后一题,代码虽然不多,但是难度较大。关键点有两个,一是理解区间DP的算法思想,二是彻底弄清填充DP表格的方法和过程。

估计你已经发现了,最终的代码并不多,难的是过程分析,动态规划说难也难,说简单也简单。

动态规划说白了,就是根据题目意思定义一个表格,可能是一维的,也可能是二维的,然后找到规律,也就是状态转移方程,不断地计算并填充每一个单元格。

因此,在学习动态规划算法的时候,一定要亲自动手绘制并填充表格,这个过程会有些繁琐,但是效果非常好,写代码反倒是最简单的事情了。

超平老师给你留两道思考题:

1). 如何使用递归算法,计算最大分值?

2). 如果使用斜线遍历的顺序,代码又该怎么写呢?

你还有什么好的想法和创意吗,也非常欢迎和超平老师分享探讨。

如果你觉得文章对你有帮助,别忘了点赞和转发,予人玫瑰,手有余香😄

需要源码的,可以移步至“超平的编程课”gzh。

这篇关于扎气球最高分-第13届蓝桥杯选拔赛Python真题精选的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1014732

相关文章

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python

python 字典d[k]中key不存在的解决方案

《python字典d[k]中key不存在的解决方案》本文主要介绍了在Python中处理字典键不存在时获取默认值的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录defaultdict:处理找不到的键的一个选择特殊方法__missing__有时候为了方便起见,

使用Python绘制可爱的招财猫

《使用Python绘制可爱的招财猫》招财猫,也被称为“幸运猫”,是一种象征财富和好运的吉祥物,经常出现在亚洲文化的商店、餐厅和家庭中,今天,我将带你用Python和matplotlib库从零开始绘制一... 目录1. 为什么选择用 python 绘制?2. 绘图的基本概念3. 实现代码解析3.1 设置绘图画

Python pyinstaller实现图形化打包工具

《Pythonpyinstaller实现图形化打包工具》:本文主要介绍一个使用PythonPYQT5制作的关于pyinstaller打包工具,代替传统的cmd黑窗口模式打包页面,实现更快捷方便的... 目录1.简介2.运行效果3.相关源码1.简介一个使用python PYQT5制作的关于pyinstall

使用Python实现大文件切片上传及断点续传的方法

《使用Python实现大文件切片上传及断点续传的方法》本文介绍了使用Python实现大文件切片上传及断点续传的方法,包括功能模块划分(获取上传文件接口状态、临时文件夹状态信息、切片上传、切片合并)、整... 目录概要整体架构流程技术细节获取上传文件状态接口获取临时文件夹状态信息接口切片上传功能文件合并功能小

python实现自动登录12306自动抢票功能

《python实现自动登录12306自动抢票功能》随着互联网技术的发展,越来越多的人选择通过网络平台购票,特别是在中国,12306作为官方火车票预订平台,承担了巨大的访问量,对于热门线路或者节假日出行... 目录一、遇到的问题?二、改进三、进阶–展望总结一、遇到的问题?1.url-正确的表头:就是首先ur

基于Python实现PDF动画翻页效果的阅读器

《基于Python实现PDF动画翻页效果的阅读器》在这篇博客中,我们将深入分析一个基于wxPython实现的PDF阅读器程序,该程序支持加载PDF文件并显示页面内容,同时支持页面切换动画效果,文中有详... 目录全部代码代码结构初始化 UI 界面加载 PDF 文件显示 PDF 页面页面切换动画运行效果总结主

Python如何实现 HTTP echo 服务器

《Python如何实现HTTPecho服务器》本文介绍了如何使用Python实现一个简单的HTTPecho服务器,该服务器支持GET和POST请求,并返回JSON格式的响应,GET请求返回请求路... 一个用来做测试的简单的 HTTP echo 服务器。from http.server import HT

轻松掌握python的dataclass让你的代码更简洁优雅

《轻松掌握python的dataclass让你的代码更简洁优雅》本文总结了几个我在使用Python的dataclass时常用的技巧,dataclass装饰器可以帮助我们简化数据类的定义过程,包括设置默... 目录1. 传统的类定义方式2. dataclass装饰器定义类2.1. 默认值2.2. 隐藏敏感信息

Python绘制土地利用和土地覆盖类型图示例详解

《Python绘制土地利用和土地覆盖类型图示例详解》本文介绍了如何使用Python绘制土地利用和土地覆盖类型图,并提供了详细的代码示例,通过安装所需的库,准备地理数据,使用geopandas和matp... 目录一、所需库的安装二、数据准备三、绘制土地利用和土地覆盖类型图四、代码解释五、其他可视化形式1.