Android系统原生应用解析之桌面闹钟及相关原理应用之时钟任务的应用(二)

本文主要是介绍Android系统原生应用解析之桌面闹钟及相关原理应用之时钟任务的应用(二),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这篇文章主要针对http://android.xsoftlab.net/training/scheduling/alarms.html#tradeoffs中的Scheduling Repeating Alarms一文进行大体翻译:

Alarms(基于AlarmManager类)可以使你的应用在正常的生命周期之外执行基于时间的任务。举个例子,你可以使用Alarm去创建一个长时间的任务,比如说每天启动一个服务来下载天气预报。


Alarms拥有以下特征:

  • 它允许你设置一个Intent在固定的时间或者时间段执行。
  • 你可以用它们和广播进行结合来启动服务去执行其它操作。
  • 它们可以在你的应用程序之外进行操作任务,所以你可以在你的应用没有启动的时候,使用它们去触发任务或者执行任务,甚至是设备在休眠状态时。
  • 它们可以帮助减小你应用资源的需求,你可以在不依赖定时器的情况下安排任务或者连续运行后台任务。

懂得权衡:

在相对有限的应用范围,一个可以执行重复任务的闹钟可以相对简单的解释其原理,它可能对你的应用来说不是一个好的选择,特别是当你需要用它来去执行一个网络任务时。一个不好的设计会导致设备的电量快速消耗并导致服务器很频繁的处于负载状态。
一个常见的触发任务的场景便是在你应用的生命周期之外去与服务器进行数据同步,这种情况下你可能想尝试用重复的时钟任务来完成,但是如果你拥有自己的服务器你就可以通过GCM和Sync Adapter结合来完成这个任务,它可能比AlarmManager效果更好。

权衡练习:

每一种基于时钟的任务设计都可能会导致系统资源被滥用,举个例子,有一个非常受欢迎的有数据同步功能的App,如果这个数据同步操作都在每天晚上11点钟进行,那么去被连接的服务器可能会一直处于高负载状态,甚至是服务器挂掉,请在使用时钟功能时遵循以下原则:

  • 将时钟任务的触发时间使用随机条件上下浮动以下,不要聚集在一个时间点。
    • 1 . 当时钟任务触发时,要先处理一下本地任务,本地任务是指任何不与服务器产生交互的任务。
    • 2 . 在同一时间,需要在一个相同时间间隔周期的基础之上执行基于时钟任务的网络请求。
  • 保证使时钟任务的频率降到最低,最好一天一次。越低越好。
  • 不要在不必要的情况下唤醒设备。
  • 尽可能的避免使用你自己的时钟任务管理器。

设置一个时钟任务:

基于上面的描述,时钟任务对有规律执行事件或者数据查询的事情来说是最好的选择,时钟任务拥有以下特性:

  • 时钟类型,具体请查看下文中的 关于时钟类型的选择。
  • 触发时间,如果你设置了过去的时间,那么闹钟任务就会立即执行。
  • 时钟间隔,比如每一天,每一个小时,每5秒等等。
  • 一个Pending Intent,它可以在时钟任务在触发时被调用,如果你在几秒钟之内设置了相同的Pending Intent,那么前一个会被后一个任务顶掉。


关于选择时钟类型

第一个需要考虑的就是时钟的触发类型了。
这里有两种方式供你选择:一种是相对时间,一种是真实的时间。相对时间就是基于系统启动的时间间隔,真实的时间就是说每天的几点几点。这个的意思就是说,相对时间适合用来做基于过去的时间任务(举个例子,比如说每过30秒执行一次任务),它不受时区的影响。而真实时间它比较适合去执行基于真实世界时间的任务。

每一种选择都都唤醒的功能,也就是说它可以在屏幕关闭的情况下唤醒CPU继续起来干活,它确保了时钟任务可以在被设定的时间呗执行,如果你的App对时间有依赖的情况下特别有用,举个例子,它可以有个小窗口可以使用户进行操作,如果你不使用唤醒的功能,那么所有的时钟任务将会在你的设备下次被打开的时候一起蹦出来。

如果你只是简单的需要每过一段时间就去执行一段时钟任务,(比如每半个小时),那么相对时间就非常适合你。

如果你需要在每一天的固定时间执行一个时钟任务,那么选择一种基于真实时间的闹钟类型,注意,无论如何,这种途径会有一些小缺点,比如APP可能会在不同的时区效果不同,如果用户自己改变了设备的系统时间,那么就可能使你的应用出现一些异常,正如上面所讨论的,使用真实时间可能伸缩性不强。我们还是推荐你尽可能的使用相对时间。

以下是类型种类:

  • ELAPSED_REALTIME 设定一个基于时间量的Pending Intent,这个时间量是从系统启动时开始计算的,不过它不会唤醒设备,相对时间还包括设备在睡眠状态下的时间。
  • ELAPSED_REALTIME_WAKEUP 这个和上面基本相同,都是基于开机时间的,不过它会在时间到达时唤醒设备。
  • RTC 这个是基于真实时间的,不过它不会唤醒设备
  • RTC_WAKEUP 这个也基于真实时间的,不过它会在时钟任务被触发的时候唤醒设备。

接下来使用ELAPSED_REALTIME_WAKEUP类型举个例子:


这个例子会在系统启动之后30分钟之后启动一个任务,并且在随后的每30分钟之后都会再次启动。

// Hopefully your alarm will have a lower frequency than this!
alarmMgr.setInexactRepeating(AlarmManager.ELAPSED_REALTIME_WAKEUP,AlarmManager.INTERVAL_HALF_HOUR,AlarmManager.INTERVAL_HALF_HOUR, alarmIntent);

这个例子会在系统启动一分钟之后启动一个时钟任务,并且会唤醒设备,不过它只会执行一次。

private AlarmManager alarmMgr;
private PendingIntent alarmIntent;
...
alarmMgr = (AlarmManager)context.getSystemService(Context.ALARM_SERVICE);
Intent intent = new Intent(context, AlarmReceiver.class);
alarmIntent = PendingIntent.getBroadcast(context, 0, intent, 0);
alarmMgr.set(AlarmManager.ELAPSED_REALTIME_WAKEUP,SystemClock.elapsedRealtime() +60 * 1000, alarmIntent);
接下来使用RTC_WAKEUP类型举个例子:

在每天下午接近两点的时候去执行一个任务,并唤醒设备,它并且会在每天的这个时间重复执行。

// Set the alarm to start at approximately 2:00 p.m.
Calendar calendar = Calendar.getInstance();
calendar.setTimeInMillis(System.currentTimeMillis());
calendar.set(Calendar.HOUR_OF_DAY, 14);
// With setInexactRepeating(), you have to use one of the AlarmManager interval
// constants--in this case, AlarmManager.INTERVAL_DAY.
alarmMgr.setInexactRepeating(AlarmManager.RTC_WAKEUP, calendar.getTimeInMillis(),AlarmManager.INTERVAL_DAY, alarmIntent);

这个例子是在每天8点半的时候执行一个任务,并且唤醒设备,接着它会在接下来的每20分钟后执行一次。

private AlarmManager alarmMgr;
private PendingIntent alarmIntent;
...
alarmMgr = (AlarmManager)context.getSystemService(Context.ALARM_SERVICE);
Intent intent = new Intent(context, AlarmReceiver.class);
alarmIntent = PendingIntent.getBroadcast(context, 0, intent, 0);
// Set the alarm to start at 8:30 a.m.
Calendar calendar = Calendar.getInstance();
calendar.setTimeInMillis(System.currentTimeMillis());
calendar.set(Calendar.HOUR_OF_DAY, 8);
calendar.set(Calendar.MINUTE, 30);
// setRepeating() lets you specify a precise custom interval--in this case,
// 20 minutes.
alarmMgr.setRepeating(AlarmManager.RTC_WAKEUP, calendar.getTimeInMillis(),1000 * 60 * 20, alarmIntent);


下面是如何取消时钟任务的例子:

// If the alarm has been set, cancel it.
if (alarmMgr!= null) {alarmMgr.cancel(alarmIntent);
}


以下是当系统启动时如何启动一个时钟任务的方式(同时也可以作为开机启动任务的一种方法):

默认情况下,在系统关机状态下时所有的时钟任务都被取消执行,为了预防这种情况发生,你可以选择在设备重启的时候自动的重新启动时钟任务,这可以确保在用户不需要手动重启的闹钟任务的情况下通过AlarmManager继续执行任务。

以下是实现步骤:

  • 1.在你程序的Manifest文件中设置开机启动权限RECEIVE_BOOT_COMPLETED,它可以使你在系统启动完成之后接受到一个 ACTION_BOOT_COMPLETED的广播,不过这种情况仅限于用户已经启动过你的程序了。
<uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED"/>
  • 2.实现一个广播接收器:
public class SampleBootReceiver extends BroadcastReceiver {@Overridepublic void onReceive(Context context, Intent intent) {if (intent.getAction().equals("android.intent.action.BOOT_COMPLETED")) {// Set the alarm here.}}
}
  • 3.在你的广播接收器的中静态添加Intent过滤器:
<receiver android:name=".SampleBootReceiver"android:enabled="false"><intent-filter><action android:name="android.intent.action.BOOT_COMPLETED"></action></intent-filter>
</receiver>


这里需要注意的是,这个广播接收器的android:enabled="false"属性为false,它的意思是除非程序已经明确的可以使用了,否则则不会调用它,这样阻止了不必要的系统启动广播被调用,你可以使用以下步骤启动广播接收器:

ComponentName receiver = new ComponentName(context, SampleBootReceiver.class);
PackageManager pm = context.getPackageManager();
pm.setComponentEnabledSetting(receiver,PackageManager.COMPONENT_ENABLED_STATE_ENABLED,PackageManager.DONT_KILL_APP);


只要有一次通过这种方式启动了广播,那么它会一直保持可用状态,甚至是用户重启了设备,换句话说,除非你的程序自己关掉了它,否则,它会一直保持可用状态,你可以通过以下方式来关掉它:

ComponentName receiver = new ComponentName(context, SampleBootReceiver.class);
PackageManager pm = context.getPackageManager();
pm.setComponentEnabledSetting(receiver,PackageManager.COMPONENT_ENABLED_STATE_DISABLED,PackageManager.DONT_KILL_APP);


好了,以上的文章就翻译完了,从整体上来说,老外写的文档可真是负责,对于某些细节会强调好几遍,大拇哥~

这篇关于Android系统原生应用解析之桌面闹钟及相关原理应用之时钟任务的应用(二)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1013000

相关文章

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

第10章 中断和动态时钟显示

第10章 中断和动态时钟显示 从本章开始,按照书籍的划分,第10章开始就进入保护模式(Protected Mode)部分了,感觉从这里开始难度突然就增加了。 书中介绍了为什么有中断(Interrupt)的设计,中断的几种方式:外部硬件中断、内部中断和软中断。通过中断做了一个会走的时钟和屏幕上输入字符的程序。 我自己理解中断的一些作用: 为了更好的利用处理器的性能。协同快速和慢速设备一起工作

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

hdu1394(线段树点更新的应用)

题意:求一个序列经过一定的操作得到的序列的最小逆序数 这题会用到逆序数的一个性质,在0到n-1这些数字组成的乱序排列,将第一个数字A移到最后一位,得到的逆序数为res-a+(n-a-1) 知道上面的知识点后,可以用暴力来解 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#in

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设