【NOIP2013模拟】Freda的传呼机 题解+代码

2024-05-29 03:32

本文主要是介绍【NOIP2013模拟】Freda的传呼机 题解+代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这题又有点像码农题!!

Description

为了 随时 与 rainbow快速交流, Freda制造了 两部传呼机 。Freda和 rainbow所在的地方有N座房屋、M条双向 光缆 。每条光缆连接两座房屋, 传呼机发出的信号只能沿着光缆传递,并且 传呼机的信号 从光缆的其中一端传递到另需要花费 t单位时间 。现在 Freda要 进行 Q次试验, 每次选取两座房屋,并想知道 传呼机的信号在这两座房屋之间传递 至少需 要多长时间。 Freda 和 rainbow简直弱爆了有木有T_TT_T ,请你帮他们吧……
N座房屋 通过光缆 一定是连通的, 并且这 M条光缆有以下三类连接情况:
A:光缆不形成环 ,也就是光缆仅 有 N-1条。
B:光缆只 形成一个环,也就是光缆 仅有 N条。
C:每条光缆仅在一个环中。

Input

第一行 包含三个用空格隔开的整数, N、M和 Q。
接下来 M行每三个整数 x、y、t,表示 房屋 x和 y之间有一条传递时为 t的光缆 。
最后 Q行每两个整数 x、y,表示 Freda想知道 在 x和 y之间传呼最少需要多长时间。

Output

输出 Q行,每一个整数表示 Freda每次试验的结果 。

Sample Input

输入1:
5 4 2
1 2 1
1 3 1
2 4 1
2 5 1
3 5
2 1
输入2:
5 5 2
1 2 1
2 1 1
1 3 1
2 4 1
2 5 1
3 5
2 1
输入3:
9 10 2
1 2 1
1 4 1
3 4 1
2 3 1
3 7 1
7 8 2
7 9 2
1 5 3
1 6 4
5 6 1
1 9
5 7

Sample Output

输出1:
3
1
输出2:
3
1
输出3:
5
6

Data Constraint

送分数据占10%,2<=N<=1000,N-1<=M<=1200。
A类数据占30%,M=N-1。
B类数据占50%,M=N。
C类数据占10%,M>N。
对于100%的数据,2<=N<=10000,N-1<=M<=12000,Q=10000,1<=x,y<=N,1<=t<=32768。

Solution

这道题可以分为四个部分讨论
P.S 如果你想AC,不用看前三部分。
第一部分:10分送分:spfa直接过
第二部分:A类数据即一颗树:用倍增LCA轻松过掉。
第三部分:B类数据即环套树
在打完第二部分分以后,一定要思考一下,这类数据是可以转换为第二类的。整整50分啊!
首先,找到这唯一的一个环,接着在这个环上随便删掉一条边,那么就变成了第二部分。可以按照第二部分一样求解。但是,也许走这条多出来的边能更短,那么何乐而不为呢?如何为呢?可以记录下这条被删掉的边的左右端点,分别使询问的点到达这两个端点,再加上这条边的长度,就是一定会走这条边的长度,取min即可。
这样就可以90分了!
但是为了最后十分
第四部分:C类数据仙人掌。
有许许多多的环,可以按照第三部分的思路,不过稍加改变。
有个叫做环顶的东西。看下面这张图:
这里写图片描述
根节点是1,那么环顶就是3。可能有多个环公用一个环顶。(见最后面的数据)
怎么处理呢?
这里写图片描述
变成这样
将环中的所有点连向环顶,边的权值为它往左或往右最近的走到环顶的距离。其余的边找连,这样就转化为第一种状态了!是不是感觉可以过了?NO!
仔细思考会发现一个问题,同一个环中的点的距离不一定是走到环顶最优,有可能换个方向走更快,怎么办?把一个点到环顶的两种路,两个距离记录下来。设为f1和f2那么X和Y之间的最短路为min{ f1[x]+f2[y],f1[y]+f2[x], abs(f1[x]-f2[x])}
那么对于输入的x和y倍增到同一个环里面,然后按上面做就好了
在求环的过程中可以用Tarjan思想

完美解决
在给出代码之前,给一个数据,这个数据很全面,我就靠调这个数据调对了

输入:
13 16 4
1 2 1
2 4 1
1 3 1
3 4 4
3 12 1
12 13 1
13 3 3
3 10 1
3 11 1
10 11 1
4 6 3
4 5 1
5 6 1
6 8 1
8 7 1
8 9 1
12 13
9 13
11 4
13 11
输出:
1
9
4
3

#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
#define N 12100
using namespace std;
int deep[N],fa[N],hzj[N],last[N*10],next[N*10],to[N*10],n,data[N*10],f[N][14],g[N][14],las2[N*10],nex2[N*10],t2[N*10],dat2[N*10],tot=1,totot=1,ttt=0,tt=0,m,ans,a[N][3],s[N][2],sy[N][4],ss=0,yj,lb[N][3],dfn[N*10],jy;
bool bz[N*10];
void putin(int x,int y,int z)
{
    next[++tot]=last[x];last[x]=tot;to[tot]=y;data[tot]=z;
    next[++tot]=last[y];last[y]=tot;to[tot]=x;data[tot]=z;
}
void link(int x,int y,int z)
{
    nex2[++totot]=las2[x];las2[x]=totot;t2[totot]=y;dat2[totot]=z;
    nex2[++totot]=las2[y];las2[y]=totot;t2[totot]=x;dat2[totot]=z;
}
void zh(int x,int y,int fa)
{
    dfn[x]=++ttt;
    for(int i=last[x];i;i=next[i])
    {
        int k=to[i];
        if (k==fa && i==(y^1)) continue;
        if (dfn[k]<dfn[x] && dfn[k]!=0) 
        {
            int jy=data[i];tt++;
            for(int l=ss;s[l][0]!=k;l--) jy+=s[l][1];
            sy[x][0]=tt;sy[x][1]=k;sy[x][2]=data[i];sy[x][3]=jy-data[i];link(k,x,min(sy[x][2],sy[x][3]));
            for(int l=ss-1;s[l][0]!=k;l--)
            {
                int z=s[l][0];
                sy[z][0]=tt;sy[z][1]=k;sy[z][2]=sy[s[l+1][0]][2]+s[l+1][1];sy[z][3]=jy-sy[z][2];
                link(k,z,min(sy[z][2],sy[z][3]));
            }
            continue;
        }
        if (dfn[to[i]]!=0) continue;
        s[++ss][0]=k;s[ss][1]=data[i];zh(k,i,x);
    }
    ss--;
}
void dfs3(int x)
{
    for(int i=las2[x];i;i=nex2[i])
    {
        if (t2[i]==fa[x]) continue;
        fa[t2[i]]=x;hzj[t2[i]]=dat2[i];deep[t2[i]]=deep[x]+1;dfs3(t2[i]);
    }
}
int lca(int x,int y)
{
    int an=0;
    fd(i,13,0) if (deep[f[x][i]]>=deep[y]) an+=g[x][i],x=f[x][i];
    fd(i,13,0) if (deep[f[y][i]]>=deep[x]) an+=g[y][i],y=f[y][i];
    fd(i,13,0) if (f[x][i]!=f[y][i]) {an=an+g[x][i]+g[y][i];x=f[x][i];y=f[y][i];}
    if (x==y) return an;
    if (x!=y && sy[x][0]==sy[y][0] && sy[x][0]!=0) an+=min(sy[x][2]+sy[y][3],min(sy[x][3]+sy[y][2],abs(sy[x][2]-sy[y][2])));
    else an+=g[x][0]+g[y][0];
    return an;
}int main()
{
    int nm;
    scanf("%d%d%d",&n,&m,&nm);
    fo(i,1,m)
    {
        int x,y,z;scanf("%d%d%d",&x,&y,&z);
        putin(x,y,z);lb[i][1]=x;lb[i][2]=y;lb[i][0]=z;
    }
    fo(i,1,nm) scanf("%d%d",&a[i][1],&a[i][2]);
    ss=1;s[1][0]=1;s[1][1]=0;zh(1,-1,0);
    fo(i,1,m) 
    {
        int x=lb[i][1],y=lb[i][2],z=lb[i][0];
        if ((sy[x][0]!=sy[y][0]|| sy[x][0]==0 || sy[x][0]==0) && sy[x][1]!=y && sy[y][1]!=x) link(x,y,z);
    }
    deep[1]=1;dfs3(1);
    fo(i,1,n) f[i][0]=fa[i],g[i][0]=hzj[i];
    fo(j,1,13)
        fo(i,1,n)
        {
            f[i][j]=f[f[i][j-1]][j-1];
            if (f[i][j]) g[i][j]=g[i][j-1]+g[f[i][j-1]][j-1];
        }
    fo(i,1,nm)
    {
        int x=a[i][1],y=a[i][2];
        ans=lca(x,y);
        printf("%d\n",ans);
    }
}

这篇关于【NOIP2013模拟】Freda的传呼机 题解+代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1012525

相关文章

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

使用Spring Cache本地缓存示例代码

《使用SpringCache本地缓存示例代码》缓存是提高应用程序性能的重要手段,通过将频繁访问的数据存储在内存中,可以减少数据库访问次数,从而加速数据读取,:本文主要介绍使用SpringCac... 目录一、Spring Cache简介核心特点:二、基础配置1. 添加依赖2. 启用缓存3. 缓存配置方案方案

MySQL的配置文件详解及实例代码

《MySQL的配置文件详解及实例代码》MySQL的配置文件是服务器运行的重要组成部分,用于设置服务器操作的各种参数,下面:本文主要介绍MySQL配置文件的相关资料,文中通过代码介绍的非常详细,需要... 目录前言一、配置文件结构1.[mysqld]2.[client]3.[mysql]4.[mysqldum

Python多线程实现大文件快速下载的代码实现

《Python多线程实现大文件快速下载的代码实现》在互联网时代,文件下载是日常操作之一,尤其是大文件,然而,网络条件不稳定或带宽有限时,下载速度会变得很慢,本文将介绍如何使用Python实现多线程下载... 目录引言一、多线程下载原理二、python实现多线程下载代码说明:三、实战案例四、注意事项五、总结引

IDEA与MyEclipse代码量统计方式

《IDEA与MyEclipse代码量统计方式》文章介绍在项目中不安装第三方工具统计代码行数的方法,分别说明MyEclipse通过正则搜索(排除空行和注释)及IDEA使用Statistic插件或调整搜索... 目录项目场景MyEclipse代码量统计IDEA代码量统计总结项目场景在项目中,有时候我们需要统计