比较(一)利用python绘制条形图

2024-05-29 02:12
文章标签 python 比较 绘制 条形图

本文主要是介绍比较(一)利用python绘制条形图,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

比较(一)利用python绘制条形图

条形图(Barplot)简介

1

条形图主要用来比较不同类别间的数据差异,一条轴表示类别,另一条则表示对应的数值度量。

快速绘制

  1. 基于seaborn

    import seaborn as sns
    import matplotlib.pyplot as plt# 导入数据
    tips = sns.load_dataset("tips")# 利用barplot函数快速绘制
    sns.barplot(x="total_bill", y="day", data=tips, estimator=sum, errorbar=None, color='#69b3a2')plt.show()
    

    2

  2. 基于matplotlib

    import matplotlib.pyplot as plt# 导入数据
    tips = sns.load_dataset("tips")
    grouped_tips = tips.groupby('day')['total_bill'].sum().reset_index()# 利用bar函数快速绘制
    plt.bar(grouped_tips.day, grouped_tips.total_bill)plt.show()
    

    3

  3. 基于pandas

    import matplotlib.pyplot as plt
    import pandas as pd# 导入数据
    tips = sns.load_dataset("tips")
    grouped_tips = tips.groupby('day')['total_bill'].sum().reset_index()# 利用plot.bar函数快速绘制
    grouped_tips.plot.bar(x='day', y='total_bill', rot=0)plt.show()
    

    4

定制多样化的条形图

自定义条形图一般是结合使用场景对相关参数进行修改,并辅以其他的绘图知识。参数信息可以通过官网进行查看,其他的绘图知识则更多来源于实战经验,大家不妨将接下来的绘图作为一种学习经验,以便于日后总结。

通过seaborn绘制多样化的条形图

seaborn主要利用barplot绘制条形图,可以通过seaborn.barplot了解更多用法

  1. 修改参数

    import seaborn as sns
    import matplotlib.pyplot as plt
    import numpy as npsns.set(font='SimHei', font_scale=0.8, style="darkgrid") # 解决Seaborn中文显示问题# 导入数据
    tips = sns.load_dataset("tips")# 构造子图
    fig, ax = plt.subplots(2,2,constrained_layout=True, figsize=(8, 8))# 修改方向-垂直
    ax_sub = sns.barplot(y="total_bill", x="day", data=tips, estimator=sum, errorbar=None, color='#69b3a2',ax=ax[0][0])
    ax_sub.set_title('垂直条形图')# 自定义排序
    ax_sub = sns.barplot(y="total_bill", x="day", data=tips, estimator=sum, errorbar=None, color='#69b3a2',order=["Fri","Thur","Sat","Sun"],ax=ax[0][1])
    ax_sub.set_title('自定义排序')# 数值排序
    df = tips.groupby('day')['total_bill'].sum().sort_values(ascending=False).reset_index()
    ax_sub = sns.barplot(y="day", x="total_bill", data=df, errorbar=None, color='#69b3a2',order=df['day'],ax=ax[1][0])
    ax_sub.set_title('数值排序')# 添加误差线
    ax_sub = sns.barplot(x="day", y="total_bill", data=tips, estimator=np.mean, errorbar=('ci', 85), capsize=.2, color='lightblue',ax=ax[1][1])
    ax_sub.set_title('添加误差线')plt.show()
    

    5

  2. 分组条形图

    import seaborn as sns
    import matplotlib.pyplot as plt
    import numpy as npsns.set(style="darkgrid")# 导入数据
    tips = sns.load_dataset("tips")fig, ax = plt.subplots(figsize=(4, 4))# 分组条形图
    colors = ["#69b3a2", "#4374B3"]
    sns.barplot(x="day", y="total_bill", hue="smoker", data=tips, errorbar=None, palette=colors)plt.show()# 分组/子分组条形图
    sns.catplot(x="sex", y="total_bill", hue="smoker", col="day", data=tips, kind="bar", height=4, aspect=.7)plt.show()
    

    6

  3. 引申-数量堆积条形图

    import seaborn as sns
    import numpy as np
    import matplotlib.pyplot as plt
    import matplotlib.patches as mpatchessns.set(style="darkgrid")# 导入数据
    tips = sns.load_dataset("tips")
    df = tips.groupby(['day', 'smoker'])['total_bill'].sum().reset_index()
    smoker_df = df[df['smoker']=='Yes']
    non_smoker_df = df[df['smoker']=='No']# 布局
    plt.figure(figsize=(6, 4))# 非吸烟者的条形图
    bar1 = sns.barplot(x='day', y='total_bill', data=non_smoker_df, color='lightblue')
    # 吸烟者的条形图,底部开始位置设置为非吸烟者的total_bill值(即吸烟者条形图在上面)
    bar2 = sns.barplot(x='day', y='total_bill', bottom=non_smoker_df['total_bill'], data=smoker_df, color='darkblue')# 图例
    top_bar = mpatches.Patch(color='darkblue', label='smoker = Yes')
    bottom_bar = mpatches.Patch(color='lightblue', label='smoker = No')
    plt.legend(handles=[top_bar, bottom_bar])plt.show()
    

    7

  4. 引申-百分比堆积条形图

    import seaborn as sns
    import matplotlib.pyplot as plt
    import pandas as pd# 导入数据
    tips = sns.load_dataset("tips")# 计算百分比
    day_total_bill = tips.groupby('day')['total_bill'].sum() # 每日数据
    group_total_bill = tips.groupby(['day', 'smoker'])['total_bill'].sum().reset_index() # 每日每组数据
    group_total_bill['percent'] = group_total_bill.apply(lambda row: row['total_bill'] / day_total_bill[row['day']] * 100, axis=1)# 将数据分成smoker和non-smoker两份,方便我们绘制两个条形图
    smoker_df = group_total_bill[group_total_bill['smoker'] == 'Yes']
    non_smoker_df = group_total_bill[group_total_bill['smoker'] == 'No']# 布局
    plt.figure(figsize=(6, 4))# 非吸烟者的条形图
    bar1 = sns.barplot(x='day', y='percent', data=non_smoker_df, color='lightblue')
    # 吸烟者的条形图,底部开始位置设置为非吸烟者的total_bill值(即吸烟者条形图在上面)
    bar2 = sns.barplot(x='day', y='percent', bottom=non_smoker_df['percent'], data=smoker_df, color='darkblue')# 图例
    top_bar = mpatches.Patch(color='darkblue', label='smoker = Yes')
    bottom_bar = mpatches.Patch(color='lightblue', label='smoker = No')
    plt.legend(handles=[top_bar, bottom_bar])plt.show()
    

    8

通过seaborn绘制多样化的条形图

seaborn主要利用barh绘制条形图,可以通过matplotlib.pyplot.barh了解更多用法

  1. 修改参数

    import matplotlib as mpl
    import matplotlib.pyplot as plt
    import numpy as np 
    import pandas as pdmpl.rcParams.update(mpl.rcParamsDefault) # 恢复默认的matplotlib样式
    plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签# 自定义数据
    height = [3, 12, 5, 18, 45]
    bars = ('A', 'B', 'C', 'D', 'E')
    y_pos = np.arange(len(bars))
    x_pos = np.arange(len(bars))# 初始化布局
    fig = plt.figure(figsize=(8,8))# 水平方向-水平条形图
    plt.subplot(3, 3, 1) 
    plt.barh(y_pos, height)
    plt.yticks(y_pos, bars)
    plt.title('水平条形图')# 指定顺序
    height_order, bars_order = zip(*sorted(zip(height, bars), reverse=False)) # 自定义顺序plt.subplot(3, 3, 2) 
    plt.barh(y_pos, height_order)
    plt.yticks(y_pos, bars_order)
    plt.title('指定顺序')# 自定义颜色
    plt.subplot(3, 3, 3) 
    plt.bar(x_pos, height, color=['black', 'red', 'green', 'blue', 'cyan'])
    plt.xticks(x_pos, bars)
    plt.title('自定义颜色')# 自定义颜色-边框颜色
    plt.subplot(3, 3, 4) 
    plt.bar(x_pos, height, color=(0.1, 0.1, 0.1, 0.1),  edgecolor='blue')
    plt.xticks(x_pos, bars)
    plt.title('自定义边框颜色')# 控制距离
    width = [0.1,0.2,3,1.5,0.3]
    x_pos_width = [0,0.3,2,4.5,5.5]plt.subplot(3, 3, 5) 
    plt.bar(x_pos_width, height, width=width)
    plt.xticks(x_pos_width, bars)
    plt.title('控制距离')# 控制宽度
    x_pos_space = [0,1,5,8,9]plt.subplot(3, 3, 6) 
    plt.bar(x_pos_space, height)
    plt.xticks(x_pos_space, bars)
    plt.title('控制宽度')# 自定义布局
    plt.subplot(3, 3, 7) 
    plt.bar(x_pos, height)
    plt.xticks(x_pos, bars, color='orange', rotation=90) # 自定义x刻度名称颜色,自定义旋转
    plt.xlabel('category', fontweight='bold', color = 'orange', fontsize='18') # 自定义x标签
    plt.yticks(color='orange') # 自定义y刻度名称颜色plt.title('自定义布局')# 添加误差线
    err = [val * 0.1 for val in height] # 计算误差(这里假设误差为height的10%)plt.subplot(3, 3, 8) 
    plt.bar(x_pos, height, yerr=err, alpha=0.5, ecolor='black', capsize=10)
    plt.xticks(x_pos, bars)
    plt.title('添加误差线')# 增加数值文本信息
    plt.subplot(3, 3, 9) 
    ax = plt.bar(x_pos, height)
    for bar in ax:yval = bar.get_height()plt.text(bar.get_x() + bar.get_width()/2.0, yval, int(yval), va='bottom') # va参数代表垂直对齐方式
    plt.xticks(x_pos, bars)
    plt.title('增加数值文本信息')fig.tight_layout() # 自动调整间距
    plt.show()
    

    9

  2. 分组条形图

    import numpy as np
    import matplotlib.pyplot as plt# 宽度设置
    barWidth = 0.25# 自定义数据
    bars1 = [12, 30, 1, 8, 22]
    bars2 = [28, 6, 16, 5, 10]
    bars3 = [29, 3, 24, 25, 17]# x位置
    r1 = np.arange(len(bars1))
    r2 = [x + barWidth for x in r1]
    r3 = [x + barWidth for x in r2]# 绘制分组条形图
    plt.bar(r1, bars1, color='#7f6d5f', width=barWidth, edgecolor='white', label='g1')
    plt.bar(r2, bars2, color='#557f2d', width=barWidth, edgecolor='white', label='g2')
    plt.bar(r3, bars3, color='#2d7f5e', width=barWidth, edgecolor='white', label='g3')# 轴标签、图例
    plt.xlabel('group', fontweight='bold')
    plt.xticks([r + barWidth for r in range(len(bars1))], ['A', 'B', 'C', 'D', 'E'])
    plt.legend()plt.show()
    

    10

  3. 数量堆积条形图

    import numpy as np
    import matplotlib.pyplot as plt
    import pandas as pd# 自定义数据
    bars1 = [12, 28, 1, 8, 22]
    bars2 = [28, 7, 16, 4, 10]
    bars3 = [25, 3, 23, 25, 17]# bars1 + bars2的高度
    bars = np.add(bars1, bars2).tolist()# x位置
    r = [0,1,2,3,4]# bar名称、宽度
    names = ['A','B','C','D','E']
    barWidth = 1# 底部bar
    plt.bar(r, bars1, color='#7f6d5f', edgecolor='white', width=barWidth, label="g1")
    # 中间bar
    plt.bar(r, bars2, bottom=bars1, color='#557f2d', edgecolor='white', width=barWidth, label="g2")
    # 顶部bar
    plt.bar(r, bars3, bottom=bars, color='#2d7f5e', edgecolor='white', width=barWidth, label="g3")# x轴设置、图例
    plt.xticks(r, names, fontweight='bold')
    plt.xlabel("group")
    plt.legend()plt.show()
    

    11

  4. 百分比堆积条形图

    import numpy as np
    import matplotlib.pyplot as plt
    import pandas as pd# 自定义数据
    r = [0,1,2,3,4] # x位置
    raw_data = {'greenBars': [20, 1.5, 7, 10, 5], 'orangeBars': [5, 15, 5, 10, 15],'blueBars': [2, 15, 18, 5, 10]}
    df = pd.DataFrame(raw_data)# 转为百分比
    totals = [i+j+k for i,j,k in zip(df['greenBars'], df['orangeBars'], df['blueBars'])]
    greenBars = [i / j * 100 for i,j in zip(df['greenBars'], totals)]
    orangeBars = [i / j * 100 for i,j in zip(df['orangeBars'], totals)]
    blueBars = [i / j * 100 for i,j in zip(df['blueBars'], totals)]# bar名称、宽度
    barWidth = 0.85
    names = ('A','B','C','D','E')# 底部bar
    plt.bar(r, greenBars, color='#b5ffb9', edgecolor='white', width=barWidth, label="g1")
    # 中间bar
    plt.bar(r, orangeBars, bottom=greenBars, color='#f9bc86', edgecolor='white', width=barWidth, label="g2")
    # 顶部bar
    plt.bar(r, blueBars, bottom=[i+j for i,j in zip(greenBars, orangeBars)], color='#a3acff', edgecolor='white', width=barWidth, label="g3")# x轴、图例
    plt.xticks(r, names)
    plt.xlabel("group")
    plt.legend()plt.show()
    

    12

通过pandas绘制多样化的条形图

pandas主要利用barh绘制条形图,可以通过pandas.DataFrame.plot.barh了解更多用法

  1. 修改参数

    import matplotlib as mpl
    import matplotlib.pyplot as plt
    import numpy as np 
    import pandas as pdplt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签# 自定义数据
    category = ['Group1']*30 + ['Group2']*50 + ['Group3']*20
    df = pd.DataFrame({'category': category})
    values = df['category'].value_counts()# 初始化布局
    fig = plt.figure(figsize=(8,4))# 水平方向-水平条形图
    plt.subplot(1, 2, 1) 
    values.plot.barh(grid=True)
    plt.title('水平条形图')# 自定义顺序、颜色
    # 指定顺序
    desired_order = ['Group1', 'Group2', 'Group3']
    values_order = values.reindex(desired_order)
    # 指定颜色
    colors = ['#69b3a2', '#cb1dd1', 'palegreen']plt.subplot(1, 2, 2) 
    values.plot.bar(color=colors,grid=True, )  
    plt.title('自定义顺序、颜色')fig.tight_layout() # 自动调整间距
    plt.show()
    

    13

  2. 分组条形图

    import pandas as pd
    import matplotlib.pyplot as plt# 自定义数据
    data = {"Product": ["Product A", "Product A", "Product A", "Product B", "Product B", "Product B"],"Segment": ["Segment 1", "Segment 2", "Segment 3", "Segment 1", "Segment 2", "Segment 3"],"Amount_sold": [100, 120, 120, 80, 160, 150]
    }df = pd.DataFrame(data)
    pivot_df = df.pivot(index='Segment',columns='Product',values='Amount_sold')# 分组条形图
    pivot_df.plot.bar(grid=True)plt.show()
    

    14

  3. 数量堆积条形图

    import pandas as pd
    import matplotlib.pyplot as plt# 自定义数据
    data = {"Product": ["Product A", "Product A", "Product A", "Product B", "Product B", "Product B"],"Segment": ["Segment 1", "Segment 2", "Segment 3", "Segment 1", "Segment 2", "Segment 3"],"Amount_sold": [100, 120, 120, 80, 160, 150]
    }df = pd.DataFrame(data)
    pivot_df = df.pivot(index='Segment',columns='Product',values='Amount_sold')# 堆积条形图
    pivot_df.plot.bar(stacked=True,grid=True)plt.show()
    

    15

  4. 百分比堆积条形图

    import pandas as pd
    import matplotlib.pyplot as plt# 自定义数据
    data = {"Product": ["Product A", "Product A", "Product A", "Product B", "Product B", "Product B"],"Segment": ["Segment 1", "Segment 2", "Segment 3", "Segment 1", "Segment 2", "Segment 3"],"Amount_sold": [100, 120, 120, 80, 160, 150]
    }df = pd.DataFrame(data)
    pivot_df = df.pivot(index='Segment',columns='Product',values='Amount_sold')
    pivot_df_percentage = pivot_df.div(pivot_df.sum(axis=1), axis=0) * 100# 百分比堆积条形图
    pivot_df_percentage.plot.bar(stacked=True,grid=True)# 图例
    plt.legend(bbox_to_anchor=(1.04, 1),loc='upper left')
    plt.show()
    

    16

总结

以上通过seaborn的barplot、matplotlib的bar和pandas的bar快速绘制条形图,并通过修改参数或者辅以其他绘图知识自定义各种各样的条形图来适应相关使用场景。

共勉~

这篇关于比较(一)利用python绘制条形图的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1012349

相关文章

利用Python快速搭建Markdown笔记发布系统

《利用Python快速搭建Markdown笔记发布系统》这篇文章主要为大家详细介绍了使用Python生态的成熟工具,在30分钟内搭建一个支持Markdown渲染、分类标签、全文搜索的私有化知识发布系统... 目录引言:为什么要自建知识博客一、技术选型:极简主义开发栈二、系统架构设计三、核心代码实现(分步解析

基于Python实现高效PPT转图片工具

《基于Python实现高效PPT转图片工具》在日常工作中,PPT是我们常用的演示工具,但有时候我们需要将PPT的内容提取为图片格式以便于展示或保存,所以本文将用Python实现PPT转PNG工具,希望... 目录1. 概述2. 功能使用2.1 安装依赖2.2 使用步骤2.3 代码实现2.4 GUI界面3.效

Python获取C++中返回的char*字段的两种思路

《Python获取C++中返回的char*字段的两种思路》有时候需要获取C++函数中返回来的不定长的char*字符串,本文小编为大家找到了两种解决问题的思路,感兴趣的小伙伴可以跟随小编一起学习一下... 有时候需要获取C++函数中返回来的不定长的char*字符串,目前我找到两种解决问题的思路,具体实现如下:

python连接本地SQL server详细图文教程

《python连接本地SQLserver详细图文教程》在数据分析领域,经常需要从数据库中获取数据进行分析和处理,下面:本文主要介绍python连接本地SQLserver的相关资料,文中通过代码... 目录一.设置本地账号1.新建用户2.开启双重验证3,开启TCP/IP本地服务二js.python连接实例1.

基于Python和MoviePy实现照片管理和视频合成工具

《基于Python和MoviePy实现照片管理和视频合成工具》在这篇博客中,我们将详细剖析一个基于Python的图形界面应用程序,该程序使用wxPython构建用户界面,并结合MoviePy、Pill... 目录引言项目概述代码结构分析1. 导入和依赖2. 主类:PhotoManager初始化方法:__in

Python从零打造高安全密码管理器

《Python从零打造高安全密码管理器》在数字化时代,每人平均需要管理近百个账号密码,本文将带大家深入剖析一个基于Python的高安全性密码管理器实现方案,感兴趣的小伙伴可以参考一下... 目录一、前言:为什么我们需要专属密码管理器二、系统架构设计2.1 安全加密体系2.2 密码强度策略三、核心功能实现详解

Python Faker库基本用法详解

《PythonFaker库基本用法详解》Faker是一个非常强大的库,适用于生成各种类型的伪随机数据,可以帮助开发者在测试、数据生成、或其他需要随机数据的场景中提高效率,本文给大家介绍PythonF... 目录安装基本用法主要功能示例代码语言和地区生成多条假数据自定义字段小结Faker 是一个 python

Python实现AVIF图片与其他图片格式间的批量转换

《Python实现AVIF图片与其他图片格式间的批量转换》这篇文章主要为大家详细介绍了如何使用Pillow库实现AVIF与其他格式的相互转换,即将AVIF转换为常见的格式,比如JPG或PNG,需要的小... 目录环境配置1.将单个 AVIF 图片转换为 JPG 和 PNG2.批量转换目录下所有 AVIF 图

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

详解如何通过Python批量转换图片为PDF

《详解如何通过Python批量转换图片为PDF》:本文主要介绍如何基于Python+Tkinter开发的图片批量转PDF工具,可以支持批量添加图片,拖拽等操作,感兴趣的小伙伴可以参考一下... 目录1. 概述2. 功能亮点2.1 主要功能2.2 界面设计3. 使用指南3.1 运行环境3.2 使用步骤4. 核