比较(一)利用python绘制条形图

2024-05-29 02:12
文章标签 python 比较 绘制 条形图

本文主要是介绍比较(一)利用python绘制条形图,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

比较(一)利用python绘制条形图

条形图(Barplot)简介

1

条形图主要用来比较不同类别间的数据差异,一条轴表示类别,另一条则表示对应的数值度量。

快速绘制

  1. 基于seaborn

    import seaborn as sns
    import matplotlib.pyplot as plt# 导入数据
    tips = sns.load_dataset("tips")# 利用barplot函数快速绘制
    sns.barplot(x="total_bill", y="day", data=tips, estimator=sum, errorbar=None, color='#69b3a2')plt.show()
    

    2

  2. 基于matplotlib

    import matplotlib.pyplot as plt# 导入数据
    tips = sns.load_dataset("tips")
    grouped_tips = tips.groupby('day')['total_bill'].sum().reset_index()# 利用bar函数快速绘制
    plt.bar(grouped_tips.day, grouped_tips.total_bill)plt.show()
    

    3

  3. 基于pandas

    import matplotlib.pyplot as plt
    import pandas as pd# 导入数据
    tips = sns.load_dataset("tips")
    grouped_tips = tips.groupby('day')['total_bill'].sum().reset_index()# 利用plot.bar函数快速绘制
    grouped_tips.plot.bar(x='day', y='total_bill', rot=0)plt.show()
    

    4

定制多样化的条形图

自定义条形图一般是结合使用场景对相关参数进行修改,并辅以其他的绘图知识。参数信息可以通过官网进行查看,其他的绘图知识则更多来源于实战经验,大家不妨将接下来的绘图作为一种学习经验,以便于日后总结。

通过seaborn绘制多样化的条形图

seaborn主要利用barplot绘制条形图,可以通过seaborn.barplot了解更多用法

  1. 修改参数

    import seaborn as sns
    import matplotlib.pyplot as plt
    import numpy as npsns.set(font='SimHei', font_scale=0.8, style="darkgrid") # 解决Seaborn中文显示问题# 导入数据
    tips = sns.load_dataset("tips")# 构造子图
    fig, ax = plt.subplots(2,2,constrained_layout=True, figsize=(8, 8))# 修改方向-垂直
    ax_sub = sns.barplot(y="total_bill", x="day", data=tips, estimator=sum, errorbar=None, color='#69b3a2',ax=ax[0][0])
    ax_sub.set_title('垂直条形图')# 自定义排序
    ax_sub = sns.barplot(y="total_bill", x="day", data=tips, estimator=sum, errorbar=None, color='#69b3a2',order=["Fri","Thur","Sat","Sun"],ax=ax[0][1])
    ax_sub.set_title('自定义排序')# 数值排序
    df = tips.groupby('day')['total_bill'].sum().sort_values(ascending=False).reset_index()
    ax_sub = sns.barplot(y="day", x="total_bill", data=df, errorbar=None, color='#69b3a2',order=df['day'],ax=ax[1][0])
    ax_sub.set_title('数值排序')# 添加误差线
    ax_sub = sns.barplot(x="day", y="total_bill", data=tips, estimator=np.mean, errorbar=('ci', 85), capsize=.2, color='lightblue',ax=ax[1][1])
    ax_sub.set_title('添加误差线')plt.show()
    

    5

  2. 分组条形图

    import seaborn as sns
    import matplotlib.pyplot as plt
    import numpy as npsns.set(style="darkgrid")# 导入数据
    tips = sns.load_dataset("tips")fig, ax = plt.subplots(figsize=(4, 4))# 分组条形图
    colors = ["#69b3a2", "#4374B3"]
    sns.barplot(x="day", y="total_bill", hue="smoker", data=tips, errorbar=None, palette=colors)plt.show()# 分组/子分组条形图
    sns.catplot(x="sex", y="total_bill", hue="smoker", col="day", data=tips, kind="bar", height=4, aspect=.7)plt.show()
    

    6

  3. 引申-数量堆积条形图

    import seaborn as sns
    import numpy as np
    import matplotlib.pyplot as plt
    import matplotlib.patches as mpatchessns.set(style="darkgrid")# 导入数据
    tips = sns.load_dataset("tips")
    df = tips.groupby(['day', 'smoker'])['total_bill'].sum().reset_index()
    smoker_df = df[df['smoker']=='Yes']
    non_smoker_df = df[df['smoker']=='No']# 布局
    plt.figure(figsize=(6, 4))# 非吸烟者的条形图
    bar1 = sns.barplot(x='day', y='total_bill', data=non_smoker_df, color='lightblue')
    # 吸烟者的条形图,底部开始位置设置为非吸烟者的total_bill值(即吸烟者条形图在上面)
    bar2 = sns.barplot(x='day', y='total_bill', bottom=non_smoker_df['total_bill'], data=smoker_df, color='darkblue')# 图例
    top_bar = mpatches.Patch(color='darkblue', label='smoker = Yes')
    bottom_bar = mpatches.Patch(color='lightblue', label='smoker = No')
    plt.legend(handles=[top_bar, bottom_bar])plt.show()
    

    7

  4. 引申-百分比堆积条形图

    import seaborn as sns
    import matplotlib.pyplot as plt
    import pandas as pd# 导入数据
    tips = sns.load_dataset("tips")# 计算百分比
    day_total_bill = tips.groupby('day')['total_bill'].sum() # 每日数据
    group_total_bill = tips.groupby(['day', 'smoker'])['total_bill'].sum().reset_index() # 每日每组数据
    group_total_bill['percent'] = group_total_bill.apply(lambda row: row['total_bill'] / day_total_bill[row['day']] * 100, axis=1)# 将数据分成smoker和non-smoker两份,方便我们绘制两个条形图
    smoker_df = group_total_bill[group_total_bill['smoker'] == 'Yes']
    non_smoker_df = group_total_bill[group_total_bill['smoker'] == 'No']# 布局
    plt.figure(figsize=(6, 4))# 非吸烟者的条形图
    bar1 = sns.barplot(x='day', y='percent', data=non_smoker_df, color='lightblue')
    # 吸烟者的条形图,底部开始位置设置为非吸烟者的total_bill值(即吸烟者条形图在上面)
    bar2 = sns.barplot(x='day', y='percent', bottom=non_smoker_df['percent'], data=smoker_df, color='darkblue')# 图例
    top_bar = mpatches.Patch(color='darkblue', label='smoker = Yes')
    bottom_bar = mpatches.Patch(color='lightblue', label='smoker = No')
    plt.legend(handles=[top_bar, bottom_bar])plt.show()
    

    8

通过seaborn绘制多样化的条形图

seaborn主要利用barh绘制条形图,可以通过matplotlib.pyplot.barh了解更多用法

  1. 修改参数

    import matplotlib as mpl
    import matplotlib.pyplot as plt
    import numpy as np 
    import pandas as pdmpl.rcParams.update(mpl.rcParamsDefault) # 恢复默认的matplotlib样式
    plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签# 自定义数据
    height = [3, 12, 5, 18, 45]
    bars = ('A', 'B', 'C', 'D', 'E')
    y_pos = np.arange(len(bars))
    x_pos = np.arange(len(bars))# 初始化布局
    fig = plt.figure(figsize=(8,8))# 水平方向-水平条形图
    plt.subplot(3, 3, 1) 
    plt.barh(y_pos, height)
    plt.yticks(y_pos, bars)
    plt.title('水平条形图')# 指定顺序
    height_order, bars_order = zip(*sorted(zip(height, bars), reverse=False)) # 自定义顺序plt.subplot(3, 3, 2) 
    plt.barh(y_pos, height_order)
    plt.yticks(y_pos, bars_order)
    plt.title('指定顺序')# 自定义颜色
    plt.subplot(3, 3, 3) 
    plt.bar(x_pos, height, color=['black', 'red', 'green', 'blue', 'cyan'])
    plt.xticks(x_pos, bars)
    plt.title('自定义颜色')# 自定义颜色-边框颜色
    plt.subplot(3, 3, 4) 
    plt.bar(x_pos, height, color=(0.1, 0.1, 0.1, 0.1),  edgecolor='blue')
    plt.xticks(x_pos, bars)
    plt.title('自定义边框颜色')# 控制距离
    width = [0.1,0.2,3,1.5,0.3]
    x_pos_width = [0,0.3,2,4.5,5.5]plt.subplot(3, 3, 5) 
    plt.bar(x_pos_width, height, width=width)
    plt.xticks(x_pos_width, bars)
    plt.title('控制距离')# 控制宽度
    x_pos_space = [0,1,5,8,9]plt.subplot(3, 3, 6) 
    plt.bar(x_pos_space, height)
    plt.xticks(x_pos_space, bars)
    plt.title('控制宽度')# 自定义布局
    plt.subplot(3, 3, 7) 
    plt.bar(x_pos, height)
    plt.xticks(x_pos, bars, color='orange', rotation=90) # 自定义x刻度名称颜色,自定义旋转
    plt.xlabel('category', fontweight='bold', color = 'orange', fontsize='18') # 自定义x标签
    plt.yticks(color='orange') # 自定义y刻度名称颜色plt.title('自定义布局')# 添加误差线
    err = [val * 0.1 for val in height] # 计算误差(这里假设误差为height的10%)plt.subplot(3, 3, 8) 
    plt.bar(x_pos, height, yerr=err, alpha=0.5, ecolor='black', capsize=10)
    plt.xticks(x_pos, bars)
    plt.title('添加误差线')# 增加数值文本信息
    plt.subplot(3, 3, 9) 
    ax = plt.bar(x_pos, height)
    for bar in ax:yval = bar.get_height()plt.text(bar.get_x() + bar.get_width()/2.0, yval, int(yval), va='bottom') # va参数代表垂直对齐方式
    plt.xticks(x_pos, bars)
    plt.title('增加数值文本信息')fig.tight_layout() # 自动调整间距
    plt.show()
    

    9

  2. 分组条形图

    import numpy as np
    import matplotlib.pyplot as plt# 宽度设置
    barWidth = 0.25# 自定义数据
    bars1 = [12, 30, 1, 8, 22]
    bars2 = [28, 6, 16, 5, 10]
    bars3 = [29, 3, 24, 25, 17]# x位置
    r1 = np.arange(len(bars1))
    r2 = [x + barWidth for x in r1]
    r3 = [x + barWidth for x in r2]# 绘制分组条形图
    plt.bar(r1, bars1, color='#7f6d5f', width=barWidth, edgecolor='white', label='g1')
    plt.bar(r2, bars2, color='#557f2d', width=barWidth, edgecolor='white', label='g2')
    plt.bar(r3, bars3, color='#2d7f5e', width=barWidth, edgecolor='white', label='g3')# 轴标签、图例
    plt.xlabel('group', fontweight='bold')
    plt.xticks([r + barWidth for r in range(len(bars1))], ['A', 'B', 'C', 'D', 'E'])
    plt.legend()plt.show()
    

    10

  3. 数量堆积条形图

    import numpy as np
    import matplotlib.pyplot as plt
    import pandas as pd# 自定义数据
    bars1 = [12, 28, 1, 8, 22]
    bars2 = [28, 7, 16, 4, 10]
    bars3 = [25, 3, 23, 25, 17]# bars1 + bars2的高度
    bars = np.add(bars1, bars2).tolist()# x位置
    r = [0,1,2,3,4]# bar名称、宽度
    names = ['A','B','C','D','E']
    barWidth = 1# 底部bar
    plt.bar(r, bars1, color='#7f6d5f', edgecolor='white', width=barWidth, label="g1")
    # 中间bar
    plt.bar(r, bars2, bottom=bars1, color='#557f2d', edgecolor='white', width=barWidth, label="g2")
    # 顶部bar
    plt.bar(r, bars3, bottom=bars, color='#2d7f5e', edgecolor='white', width=barWidth, label="g3")# x轴设置、图例
    plt.xticks(r, names, fontweight='bold')
    plt.xlabel("group")
    plt.legend()plt.show()
    

    11

  4. 百分比堆积条形图

    import numpy as np
    import matplotlib.pyplot as plt
    import pandas as pd# 自定义数据
    r = [0,1,2,3,4] # x位置
    raw_data = {'greenBars': [20, 1.5, 7, 10, 5], 'orangeBars': [5, 15, 5, 10, 15],'blueBars': [2, 15, 18, 5, 10]}
    df = pd.DataFrame(raw_data)# 转为百分比
    totals = [i+j+k for i,j,k in zip(df['greenBars'], df['orangeBars'], df['blueBars'])]
    greenBars = [i / j * 100 for i,j in zip(df['greenBars'], totals)]
    orangeBars = [i / j * 100 for i,j in zip(df['orangeBars'], totals)]
    blueBars = [i / j * 100 for i,j in zip(df['blueBars'], totals)]# bar名称、宽度
    barWidth = 0.85
    names = ('A','B','C','D','E')# 底部bar
    plt.bar(r, greenBars, color='#b5ffb9', edgecolor='white', width=barWidth, label="g1")
    # 中间bar
    plt.bar(r, orangeBars, bottom=greenBars, color='#f9bc86', edgecolor='white', width=barWidth, label="g2")
    # 顶部bar
    plt.bar(r, blueBars, bottom=[i+j for i,j in zip(greenBars, orangeBars)], color='#a3acff', edgecolor='white', width=barWidth, label="g3")# x轴、图例
    plt.xticks(r, names)
    plt.xlabel("group")
    plt.legend()plt.show()
    

    12

通过pandas绘制多样化的条形图

pandas主要利用barh绘制条形图,可以通过pandas.DataFrame.plot.barh了解更多用法

  1. 修改参数

    import matplotlib as mpl
    import matplotlib.pyplot as plt
    import numpy as np 
    import pandas as pdplt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签# 自定义数据
    category = ['Group1']*30 + ['Group2']*50 + ['Group3']*20
    df = pd.DataFrame({'category': category})
    values = df['category'].value_counts()# 初始化布局
    fig = plt.figure(figsize=(8,4))# 水平方向-水平条形图
    plt.subplot(1, 2, 1) 
    values.plot.barh(grid=True)
    plt.title('水平条形图')# 自定义顺序、颜色
    # 指定顺序
    desired_order = ['Group1', 'Group2', 'Group3']
    values_order = values.reindex(desired_order)
    # 指定颜色
    colors = ['#69b3a2', '#cb1dd1', 'palegreen']plt.subplot(1, 2, 2) 
    values.plot.bar(color=colors,grid=True, )  
    plt.title('自定义顺序、颜色')fig.tight_layout() # 自动调整间距
    plt.show()
    

    13

  2. 分组条形图

    import pandas as pd
    import matplotlib.pyplot as plt# 自定义数据
    data = {"Product": ["Product A", "Product A", "Product A", "Product B", "Product B", "Product B"],"Segment": ["Segment 1", "Segment 2", "Segment 3", "Segment 1", "Segment 2", "Segment 3"],"Amount_sold": [100, 120, 120, 80, 160, 150]
    }df = pd.DataFrame(data)
    pivot_df = df.pivot(index='Segment',columns='Product',values='Amount_sold')# 分组条形图
    pivot_df.plot.bar(grid=True)plt.show()
    

    14

  3. 数量堆积条形图

    import pandas as pd
    import matplotlib.pyplot as plt# 自定义数据
    data = {"Product": ["Product A", "Product A", "Product A", "Product B", "Product B", "Product B"],"Segment": ["Segment 1", "Segment 2", "Segment 3", "Segment 1", "Segment 2", "Segment 3"],"Amount_sold": [100, 120, 120, 80, 160, 150]
    }df = pd.DataFrame(data)
    pivot_df = df.pivot(index='Segment',columns='Product',values='Amount_sold')# 堆积条形图
    pivot_df.plot.bar(stacked=True,grid=True)plt.show()
    

    15

  4. 百分比堆积条形图

    import pandas as pd
    import matplotlib.pyplot as plt# 自定义数据
    data = {"Product": ["Product A", "Product A", "Product A", "Product B", "Product B", "Product B"],"Segment": ["Segment 1", "Segment 2", "Segment 3", "Segment 1", "Segment 2", "Segment 3"],"Amount_sold": [100, 120, 120, 80, 160, 150]
    }df = pd.DataFrame(data)
    pivot_df = df.pivot(index='Segment',columns='Product',values='Amount_sold')
    pivot_df_percentage = pivot_df.div(pivot_df.sum(axis=1), axis=0) * 100# 百分比堆积条形图
    pivot_df_percentage.plot.bar(stacked=True,grid=True)# 图例
    plt.legend(bbox_to_anchor=(1.04, 1),loc='upper left')
    plt.show()
    

    16

总结

以上通过seaborn的barplot、matplotlib的bar和pandas的bar快速绘制条形图,并通过修改参数或者辅以其他绘图知识自定义各种各样的条形图来适应相关使用场景。

共勉~

这篇关于比较(一)利用python绘制条形图的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1012349

相关文章

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

Python安装时常见报错以及解决方案

《Python安装时常见报错以及解决方案》:本文主要介绍在安装Python、配置环境变量、使用pip以及运行Python脚本时常见的错误及其解决方案,文中介绍的非常详细,需要的朋友可以参考下... 目录一、安装 python 时常见报错及解决方案(一)安装包下载失败(二)权限不足二、配置环境变量时常见报错及

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(