webserver服务器从零搭建到上线(十)|⭐️EventLoop类(二)——成员方法详解

2024-05-28 21:52

本文主要是介绍webserver服务器从零搭建到上线(十)|⭐️EventLoop类(二)——成员方法详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

首先,在阅读本章之前,我们需要搞清楚为什么EventLoop类这么复杂

其次,我们还需要再强调一次关于mainLoop唤醒subLoop的流程(可以看完该类代码后再回顾该流程):

为什么需要唤醒 subLoop?
subLoop(通常指的是工作线程中的 EventLoop)可能会被阻塞在 poller 的等待调用上,例如 epoll_wait。当主线程或其他线程需要向 subLoop 传递新任务或事件时,需要唤醒 subLoop,使其能够及时处理新提交的任务或事件。
subLoop 被阻塞在哪里?
subLoop 通常被阻塞在 poller 的等待调用上,如 epoll_wait、poll 或 select。这些系统调用会在没有事件发生时使线程进入阻塞状态,从而节省 CPU 资源。
为什么要有唤醒这个流程?
举一个例子,我们运行整个系统后,我们同时运行了一个 mainLoop,和3个subLoop,我们其中一个subLoop1正在执行相关事件的回调操作,subLoop2subLoop3已经干完活了,被阻塞到 loop()方法的 poller_->poll 调用上(也就是epoll_wait),现在我们的mianLoop又来了新连接,那么minLoop就会封装一个wakeupFd的channel和其他新的cfd的channle,那么mainLoop就通过负载均衡算法(轮询)唤醒特定的、被阻塞的 subLoop,它被wakeupFd唤醒之后就开始真正干活了。

文章目录

  • 定义全局函数
  • 构造函数和析构函数
    • 1. 初始化成员变量、设置 wakeupFd_ 的事件类型及回调
    • 2.析构函数
  • loop()和quit()
    • loop()
    • quit()函数
  • wakeup和对channel的相关操作
  • runInLoop()和queueInLoop()
  • doPendingFunctors()
  • 结语
  • 整体代码

书接上回

定义全局函数

首先我们定义好全局函数:

//防止一个线程创建多个EventLoop 作用相当于thread_local
__thread EventLoop *t_loopInThisThread = nullptr;//定义默认的Poller IO复用接口的超时时间
const int kPollTimeMs = 10000;//创建wakeupfd, 用来notify唤醒subReactor处理新来的channel
int createEventfd() {int evtfd = ::eventfd(0, EFD_NONBLOCK | EFD_CLOEXEC);if (evtfd < 0) {LOG_FATAL("eventfd error: %d \n", errno);}return evtfd;
}

在这里我们封装了定义wakeupFd_的函数,主要内容就是封装一个eventfd()系统调用。

构造函数和析构函数

EventLoop::EventLoop(): looping_(false), quit_(false), callingPendingFunctors_(false), threadId_(CurrentThread::tid()), poller_(Poller::newDefaultPoller(this)), wakeupFd_(createEventfd()), wakeupChannel_(new Channel(this, wakeupFd_)) {LOG_DEBUG("EventLoop create %p in thread %d \n", this, threadId_);if (t_loopInThisThread) {LOG_FATAL("Another EventLoop %p exists in this thread %d \n", t_loopInThisThread, threadId_);} else {t_loopInThisThread = this;}//设置wakeupFd的事件类型以及发生事件后的回调操作wakeupChannel_->setReadCallback(std::bind(&EventLoop::handleRead, this));// 每一个eventloop都将监听wakeupChannel的EPOLLIN读事件wakeupChannel_->enableReading();
}void EventLoop::handleRead() {uint64_t one = 1;ssize_t n = read(wakeupFd_, &one, sizeof one);if (n != sizeof one) {LOG_ERROR("EventLoop::handleRead() reads %lu bytes instead of 8", n);}
}EventLoop::~EventLoop() {wakeupChannel_->disableAll();wakeupChannel_->remove();::close(wakeupFd_);t_loopInThisThread = nullptr;
}

1. 初始化成员变量、设置 wakeupFd_ 的事件类型及回调

: looping_(false)
, quit_(false)
, callingPendingFunctors_(false)
, threadId_(CurrentThread::tid())
, poller_(Poller::newDefaultPoller(this))
, wakeupFd_(createEventfd())
, wakeupChannel_(new Channel(this, wakeupFd_))
  • looping_:表示事件循环是否正在运行。
  • quit_:标志是否退出事件循环。
  • callingPendingFunctors_:标志标识当前loop是否有需要执行的回调操作。
  • threadId_:保存当前线程的ID,使用 CurrentThread::tid() 获取。
  • poller_:创建一个默认的 Poller 实例,这里是使用EPollPoller。
  • wakeupFd_:创建一个用于线程间唤醒的文件描述符
  • wakeupChannel_:创建一个新的 Channel,用于监控 wakeupFd_
    我们把wakeupFd_封装在一个Channel里面,说明每一个subReactor上都监听了wakeupChannel,当mainReactor去notify我们这个wakeupFd_的时候,相应的subReactor就能监听到该wakeupfd对应的事件,它对应的事件就是subReactor被唤醒,起来干活(从handleRead函数就可以看出来了)。
    这里我们的handleRead中发送的东西并不重要,只是让subReactor感知到我们的fd上面有读事件发生,我就睡醒去干活了,就能去拿到新用户连接的channel了。
	...// 设置wakeupfd的事件类型以及发生事件后的回调操作wakeupChannel_->setReadCallback(std::bind(&EventLoop::handleRead, this));// 每一个eventloop都将监听wakeupchannel的EPOLLIN读事件了wakeupChannel_->enableReading();
}
void EventLoop::handleRead()
{uint64_t one = 1;ssize_t n = read(wakeupFd_, &one, sizeof one);if (n != sizeof one){LOG_ERROR("EventLoop::handleRead() reads %lu bytes instead of 8", n);}
}

最后必须谈一下我们的线程绑定:

{...if (t_loopInThisThread){LOG_FATAL("Another EventLoop %p exists in this thread %d \n", t_loopInThisThread, threadId_);}else{t_loopInThisThread = this;}...
}
  • 检查当前线程是否已有一个 EventLoop 实例,如果有,记录致命错误并终止程序。否则,将 t_loopInThisThread 指向当前 EventLoop 实例。

2.析构函数

析构函数的主要作用是清理资源,关闭文件描述符,并解除 EventLoop 与线程的绑定。

wakeupChannel_->disableAll(); //禁用 wakeupChannel_ 上的所有事件。
wakeupChannel_->remove();  // 将 wakeupChannel_ 从 Poller 中移除。
::close(wakeupFd_); //关闭用于唤醒的文件描述符 wakeupFd_,释放资源。
t_loopInThisThread = nullptr;//解除 EventLoop 与线程的绑定

剩下的资源基本都是由智能指针进行管理,不需要我们来手动操作了,比如说:

std::unique_ptr<Poller> poller_;
std::unique_ptr<Channel> wakeupChannel_;

loop()和quit()

loop()

该函数用来开启事件循环,也是我们EventLoop最核心的函数,它的主要任务就是用来调度底层的Poller开启事件分发器,开始监听事件。

先定义好状态位置,也就是说该EventLoop开启,非退出状态。

void EventLoop::loop()
{looping_ = true;quit_ = false;LOG_INFO("EventLoop %p start looping \n", this);...
}

然后开启了我们的while循环,这个while死循环熟不熟悉!这段代码务必结合poller->poll一起来看,我们通过传递给poll一个空的activeChannels,让他来代劳监听任务,其实就可以理解为,之前我们在写网络编程时直接调用了一个epoll_wait,只不过现在被封装好了:

    while(!quit_){activeChannels_.clear();// 监听两类fd   一种是client的fd,一种wakeupfdpollReturnTime_ = poller_->poll(kPollTimeMs, &activeChannels_);...}

我们站在EventLoop的角色来看,当底层的epoll发生事件以后,activeChannels_这个vector里面放的就是所有发生事件的channel。

在此之后,我们得到了发生事件的channels,那我现在就应该去处理它:

    while(!quit_){activeChannels_.clear();pollReturnTime_ = poller_->poll(kPollTimeMs, &activeChannels_);for (Channel * channel : ativeChannels_) //Poller监听哪些channel发生了事件,上报给EventLoop,通知channel处理相应的事件channel->handleEvent(pollReturnTime_);}//执行当前EventLoop事件循环需要处理的回调操作doPendingFunctors();

这里我们的Poller监听到了发生事件的channel,然后立马上报给EventLoop,通知channel处理相应的事件。这里的handleEvent无非就对应了那些读、写、错误、关闭等回调函数。

随后我们调用了doPendingFunctors(),这里的函数表示执行当前EventLoop事件循环需要处理的回调操作,这里是什么意思呢?

这里梳理一下整个流程来帮助理解doPendingFunctors()操作:

  1. 首先我们的IO线程mainLoop,它主要用来做accept的工作,就是来接受新用户的连接,然后accept会返回一个通信用的fd,我们肯定会用一个channel打包fd的。
  2. 由于我们的mainLoop只管理新用户的连接工作,打包好的fd,必须得分发给subLoop,如果我们从未调用过muduo库的setThreadNum(该函数后续会讲),也就是我们目前只有一个loop也就是我们的mainLoop,也就是说到时候我们的mainLoop不仅要监听新用户的连接,还要负责已连接用户的读写事件。
  3. 如果我们调用了setThreadNum(并且作为服务器我们肯定会调用setThreadNum的),所以这里我们肯定会起一定数量的subloop,那么mainLoop拿到跟新用户通信的channel之后,就会唤醒某一个subloop。
  4. 所以mainLoop会实现注册一个回调cb(CallBackFunction),这个回调需要subloop来执行。那么我们现在把目前的loop函数想象成一个subloop的loop调用,但是问题是这个subloop还在睡觉呢,还没起床
  5. 现在需要我们的mainLoop wakeup该subloop之后,起来以后它做的事情首先就是执行doPendingFunctors(),也就是执行回调,其回调都在std::vector<Functor> pendingFunctors_中写着,那么这个回调就是之前mainLoop注册的cb操作,这个cb可能是1个,也可能是多个。
  • 这就是doPendingFunctors()存在的意义。随后我们会讲解doPendingFunctors()如何实现(一般它与我们的queueInLoop配合使用)

quit()函数

void EventLoop::quit() 

这里的quit()函数也非常讲究:

  • loop在自己的线程中调用quit()。
    • 我们可以确定的是,如果loop都在自己的线程中调用quit了,那肯定是已经没有阻塞在Poller_->poll了,然后在loop()函数中将不再满足while(!quit)的条件,所以整个loop()调用就正常结束了。
  • 非loop线程中,调用了loop的quit()
    • 比如说在一个subloop(workerThread)中,调用了mainLoop(IOThread)的quit(),我应该把人家先唤醒wakeup,唤醒之后那个loop()就从Poller_->poll里返回回来了,它再回到while将不再满足while(!quit),从而正常结束loop()的调用。

wakeup和对channel的相关操作

//用来唤醒loop所在的线程 向wakeupfd_写一个数据,wakeupChannel就发生读事件,当前loop线程就会被唤醒
void EventLoop::wakeup() {uint64_t one = 1;ssize_t n = write(wakeupFd_, &one, sizeof one);if (n != sizeof one) {LOG_ERROR("EventLoop::wakeup writes %lu bytes instead of 8", n);}
}// EventLoop的方法==》Poller的方法
void EventLoop::updateChannel(Channel *channel) {poller_->updateChannel(channel);
}
void EventLoop::removeChannel(Channel *channel) {poller_->removeChannel(channel);
}
bool EventLoop::hasChannel(Channel *channel){return poller_->hasChannel(channel);
}

runInLoop()和queueInLoop()

//在当前loop中执行cb
void EventLoop::runInLoop(Functor cb) {if (isInLoopThread()) { //在当前的loop线程中执行callbackcb();} else { //在非loop线程中执行cb,就需要唤醒loop所在线程,执行cbqueueInLoop(cb);}
}// 把cb放入队列中,唤醒loop所在的线程,执行cb
void EventLoop::queueInLoop(Functor cb) {{std::unique_lock<std::mutex> lock(mutex_);pendingFunctors_.emplace_back(cb);}//唤醒相应的,需要执行上面回调操作的loop的线程了if (!isInLoopThread() || callingPendingFunctors_) {wakeup(); //唤醒loop所在线程}
}
  • runInLoop 方法用于在 EventLoop 所在的线程中直接执行一个回调函数。如果当前线程是 EventLoop 所属的线程,那么直接执行回调函数;否则,将回调函数添加到队列,并唤醒 EventLoop 线程来执行回调函数。
  • queueInLoop 方法将回调函数添加到 pendingFunctors_ 队列,并唤醒 EventLoop 线程来处理这些回调函数。这种方法用于异步任务的执行。
    为什么该方法中需要|| callingPendingFunctors_呢?我们需要先搞清楚doPendingFunctors()的逻辑

doPendingFunctors()

void EventLoop::doPendingFunctors() {//执行回调std::vector<Functor> functors;callingPendingFunctors_ = true; // 表示需要执行回调{std::unique_lock<std::mutex> lock(mutex_);functors.swap(pendingFunctors_);}for (const Functor &functor : functors)functor(); //执行当前loop需要执行的回调操作callingPendingFunctors_ = false; //回调执行完了,开始新一轮循环
}

它首先定义了一个局部的 std::vector<Functor> functors,来装回调函数,然后把callingPendingFunctors_置为true
然后我们之前在queueInLoop()中执行了往pendingFunctors里装了回调函数,现在我们把它放到了一个局部定义的新的functors中,并且把pendingFunctors_置为空,为什么要这么做呢?
因为我们如果不这样做,直接在pendingFunctors上操作,那么我们就得变执行回调函数,边从pendingFunctors上取出回调函数,但是这样的话别的loop有可能还在往这上面注册回调函数呢,那我们是加锁还是不加锁呢,加锁回阻塞我们的mainloop线程可能导致它无法去监听新连接,不加锁那我们的pendingFunctors岂不是乱套了?

现在我们也可以解释EventLoop::queueInLoop(Functor cb)中:

if (!isInLoopThread() || callingPendingFunctors_) {wakeup();
}

这里的callingPendingFunctors_就是表示我当前的subReactor正在执行回调「也就是说在while(!quit_)循环体内」的同时,某个线程调用EventLoop::queueInLoop(Functor cb)又给我的pendingFunctors_里写了新的回调函数,那么我肯定得再唤醒一次,不然subReactor在loop()函数中会被被阻塞到poller_->poll()处。但是有了wakeup()之后,就不会发生这个事情了!


结语

如果我们在mainloop和subLoop之间放一个生产者消费者的线程安全的队列,这样的话我们的逻辑会相当好处理。

/*mainLoop========================生产者消费者的线程安全队列subLoop1	subLoop1	subLoop1
*/

但是在我们的muduo库中是不存在这个队列,mainLoop和各个subLoop是直接通过我们的wakeupFd_来进行线程间的通信。

所以在这里我们函数在执行的时候,逻辑相当巧妙,这里的EventLoop类的代码逻辑非常非常巧妙。

整体代码

EventLoop.h代码:

#pragma once#include <functional>
#include <vector>
#include <atomic>
#include <memory>
#include <mutex>#include "Timestamp.h"
#include "noncopyable.h"
#include "CurrentThread.h"class Channel;
class Poller;//事件循环类    主要包含了两个大模块channel Pollor(epoll的抽象)
class EventLoop : noncopyable {
public:using Functor = std::function<void()>;EventLoop();~EventLoop();//开启事件循环void loop();//退出事件循环void quit();Timestamp pollReturnTime() const { return pollReturnTime_; }// 在当前loop中执行cbvoid runInLoop(Functor cb);//把cb放入队列中,唤醒loop所在的线程后再去执行cbvoid queueInLoop(Functor cb);//用来唤醒loop所在的线程void wakeup();// EventLoop的方法==》Poller的方法void updateChannel(Channel *channel);void removeChannel(Channel *channel);bool hasChannel(Channel *channel);//判断EventLoop对象是否已经在自己的线程里面bool isInLoopThread() const { return threadId_ == CurrentThread::tid(); }
private:void handleRead(); //wake upvoid doPendingFunctors();using ChannelList = std::vector<Channel*>;std::atomic_bool looping_;  //原子操作,通过CAS实现std::atomic_bool quit_;     //标识退出loop循环const pid_t threadId_;      //记录当前loop所在线程的idTimestamp pollReturnTime_;  //poller返回事件的channels的时间点std::unique_ptr<Poller> poller_;int wakeupFd_; std::unique_ptr<Channel> wakeupChannel_;ChannelList activeChannels_;std::atomic_bool callingPendingFunctors_; //标识当前loop是否有需要执行的回调操作std::vector<Functor> pendingFunctors_;  //存储loop需要执行的所有回调操作std::mutex mutex_; //互斥锁,用来保护上面vector容器的线程安全操作
};

EventLoop.cc:

#include "EventLoop.h"
#include "Logger.h"
#include "Poller.h"
#include "Channel.h"#include <unistd.h>
#include <sys/eventfd.h>//防止一个线程创建多个EventLoop 作用相当于thread_local
__thread EventLoop *t_loopInThisThread = nullptr;//定义默认的Poller IO复用接口的超时时间
const int kPollTimeMs = 10000;//创建wakeupfd, 用来notify唤醒subReactor处理新来的channel
int createEventfd() {int evtfd = ::eventfd(0, EFD_NONBLOCK | EFD_CLOEXEC);if (evtfd < 0) {LOG_FATAL("eventfd error: %d \n", errno);}return evtfd;
}EventLoop::EventLoop(): looping_(false), quit_(false), callingPendingFunctors_(false), threadId_(CurrentThread::tid()), poller_(Poller::newDefaultPoller(this)), wakeupFd_(createEventfd()), wakeupChannel_(new Channel(this, wakeupFd_)) {LOG_DEBUG("EventLoop create %p in thread %d \n", this, threadId_);if (t_loopInThisThread) {LOG_FATAL("Another EventLoop %p exists in this thread %d \n", t_loopInThisThread, threadId_);} else {t_loopInThisThread = this;}//设置wakeupFd的事件类型以及发生事件后的回调操作wakeupChannel_->setReadCallback(std::bind(&EventLoop::handleRead, this));// 每一个eventloop都将监听wakeupChannel的EPOLLIN读事件wakeupChannel_->enableReading();
}void EventLoop::handleRead() {uint64_t one = 1;ssize_t n = read(wakeupFd_, &one, sizeof one);if (n != sizeof one) {LOG_ERROR("EventLoop::handleRead() reads %lu bytes instead of 8", n);}
}EventLoop::~EventLoop() {wakeupChannel_->disableAll();wakeupChannel_->remove();::close(wakeupFd_);t_loopInThisThread = nullptr;
}// 开启事件循环
void EventLoop::loop() {looping_ = true;quit_ = false;LOG_INFO("EventLoop %p start looping \n", this);while (!quit_) {activeChannels_.clear();//监听两类fd,一种是client的fd,一种是wakeupFdpollReturnTime_ = poller_->poll(kPollTimeMs, &activeChannels_);for (Channel* channel : activeChannels_) {//Poller监听那些channel发生了事件,然后上报给EventLoop,通知channel处理相应的事件channel->handleEvent(pollReturnTime_);}//执行当前EventLoop事件循环需要处理的回调操作doPendingFunctors();}LOG_INFO("EventLoop %p stop looping. \n", this);looping_ = false;
}//退出事件循环
void EventLoop::quit() {quit_ = true;if (!isInLoopThread()) {wakeup();}
}//在当前loop中执行cb
void EventLoop::runInLoop(Functor cb) {if (isInLoopThread()) { //在当前的loop线程中执行callbackcb();} else { //在非loop线程中执行cb,就需要唤醒loop所在线程,执行cbqueueInLoop(cb);}
}// 把cb放入队列中,唤醒loop所在的线程,执行cb
void EventLoop::queueInLoop(Functor cb) {{std::unique_lock<std::mutex> lock(mutex_);pendingFunctors_.emplace_back(cb);}//唤醒相应的,需要执行上面回调操作的loop的线程了if (!isInLoopThread() || callingPendingFunctors_) {wakeup(); //唤醒loop所在线程}
}//用来唤醒loop所在的线程 向wakeupfd_写一个数据,wakeupChannel就发生读事件,当前loop线程就会被唤醒
void EventLoop::wakeup() {uint64_t one = 1;ssize_t n = write(wakeupFd_, &one, sizeof one);if (n != sizeof one) {LOG_ERROR("EventLoop::wakeup writes %lu bytes instead of 8", n);}
}// EventLoop的方法==》Poller的方法
void EventLoop::updateChannel(Channel *channel) {poller_->updateChannel(channel);
}
void EventLoop::removeChannel(Channel *channel) {poller_->removeChannel(channel);
}
bool EventLoop::hasChannel(Channel *channel){return poller_->hasChannel(channel);
}void EventLoop::doPendingFunctors() {//执行回调std::vector<Functor> functors;callingPendingFunctors_ = true;{std::unique_lock<std::mutex> lock(mutex_);functors.swap(pendingFunctors_);}for (const Functor &functor : functors)functor(); //执行当前loop需要执行的回调操作callingPendingFunctors_ = false;
}

这篇关于webserver服务器从零搭建到上线(十)|⭐️EventLoop类(二)——成员方法详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1011796

相关文章

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

服务器集群同步时间手记

1.时间服务器配置(必须root用户) (1)检查ntp是否安装 [root@node1 桌面]# rpm -qa|grep ntpntp-4.2.6p5-10.el6.centos.x86_64fontpackages-filesystem-1.41-1.1.el6.noarchntpdate-4.2.6p5-10.el6.centos.x86_64 (2)修改ntp配置文件 [r

OpenHarmony鸿蒙开发( Beta5.0)无感配网详解

1、简介 无感配网是指在设备联网过程中无需输入热点相关账号信息,即可快速实现设备配网,是一种兼顾高效性、可靠性和安全性的配网方式。 2、配网原理 2.1 通信原理 手机和智能设备之间的信息传递,利用特有的NAN协议实现。利用手机和智能设备之间的WiFi 感知订阅、发布能力,实现了数字管家应用和设备之间的发现。在完成设备间的认证和响应后,即可发送相关配网数据。同时还支持与常规Sof

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

浅谈主机加固,六种有效的主机加固方法

在数字化时代,数据的价值不言而喻,但随之而来的安全威胁也日益严峻。从勒索病毒到内部泄露,企业的数据安全面临着前所未有的挑战。为了应对这些挑战,一种全新的主机加固解决方案应运而生。 MCK主机加固解决方案,采用先进的安全容器中间件技术,构建起一套内核级的纵深立体防护体系。这一体系突破了传统安全防护的局限,即使在管理员权限被恶意利用的情况下,也能确保服务器的安全稳定运行。 普适主机加固措施:

webm怎么转换成mp4?这几种方法超多人在用!

webm怎么转换成mp4?WebM作为一种新兴的视频编码格式,近年来逐渐进入大众视野,其背后承载着诸多优势,但同时也伴随着不容忽视的局限性,首要挑战在于其兼容性边界,尽管WebM已广泛适应于众多网站与软件平台,但在特定应用环境或老旧设备上,其兼容难题依旧凸显,为用户体验带来不便,再者,WebM格式的非普适性也体现在编辑流程上,由于它并非行业内的通用标准,编辑过程中可能会遭遇格式不兼容的障碍,导致操

搭建Kafka+zookeeper集群调度

前言 硬件环境 172.18.0.5        kafkazk1        Kafka+zookeeper                Kafka Broker集群 172.18.0.6        kafkazk2        Kafka+zookeeper                Kafka Broker集群 172.18.0.7        kafkazk3

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

【IPV6从入门到起飞】5-1 IPV6+Home Assistant(搭建基本环境)

【IPV6从入门到起飞】5-1 IPV6+Home Assistant #搭建基本环境 1 背景2 docker下载 hass3 创建容器4 浏览器访问 hass5 手机APP远程访问hass6 更多玩法 1 背景 既然电脑可以IPV6入站,手机流量可以访问IPV6网络的服务,为什么不在电脑搭建Home Assistant(hass),来控制你的设备呢?@智能家居 @万物互联