代码随想录-Day21

2024-05-28 04:12
文章标签 随想录 代码 day21

本文主要是介绍代码随想录-Day21,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

530. 二叉搜索树的最小绝对差

给你一个二叉搜索树的根节点 root ,返回 树中任意两不同节点值之间的最小差值 。

差值是一个正数,其数值等于两值之差的绝对值。

class Solution {int pre;int ans;public int getMinimumDifference(TreeNode root) {ans = Integer.MAX_VALUE;pre = -1;dfs(root);return ans;}public void dfs(TreeNode root) {if (root == null) {return;}dfs(root.left);if (pre == -1) {pre = root.val;} else {ans = Math.min(ans, root.val - pre);pre = root.val;}dfs(root.right);}
}

这段代码定义了一个名为 Solution 的类,其中包含两个成员变量 preans 以及两个方法:getMinimumDifferencedfs。该类主要用于解决一个问题:在一棵给定的二叉搜索树(BST)中找到两个节点之间的最小差值(相邻节点间差值的最小值)。具体分析如下:

  1. 成员变量:

    • pre 初始化为 -1,用于存储中序遍历过程中前一个访问到的节点的值。
    • ans 初始化为 Integer.MAX_VALUE,用于记录遍历过程中找到的最小差值。
  2. 方法 getMinimumDifference(TreeNode root):

    • 这是主要的接口函数,接收BST的根节点 root 作为输入参数,返回找到的最小差值。
    • 首先,它初始化 ansInteger.MAX_VALUEpre-1(虽然 pre 已经在类级别初始化,这里可视为一种明确的逻辑起点标志)。
    • 然后调用深度优先搜索(DFS)方法 dfs,从根节点开始遍历整个BST。
    • 最后,返回找到的最小差值 ans
  3. 方法 dfs(TreeNode root):

    • 这是一个递归方法,用于实现深度优先搜索遍历BST。
    • 基本情况:如果当前节点 root 为空,则直接返回,结束当前递归路径。
    • 递归遍历左子树,确保按照BST的中序遍历顺序(左根右)访问节点。
    • 在访问当前节点 root 之前,先判断 pre 是否已经被初始化(即首次访问或之前已访问过节点)。如果是第一次访问(pre == -1),则将 pre 更新为当前节点值;否则,计算当前节点值与 pre 的差值,并更新全局最小差值 ans
    • 更新 pre 为当前节点值,准备与下一个节点比较。
    • 递归遍历右子树,继续按照中序遍历顺序访问节点。

通过这样的中序遍历策略,由于BST的中序遍历会得到一个升序序列,遍历过程中相邻节点值的差值自然就是我们需要找的最小差值。这种方法巧妙地利用了BST的性质,实现了对最小差值的有效查找。

501. 二叉搜索树中的众数

class Solution {List<Integer> answer = new ArrayList<Integer>();int base, count, maxCount;public int[] findMode(TreeNode root) {dfs(root);int[] mode = new int[answer.size()];for (int i = 0; i < answer.size(); ++i) {mode[i] = answer.get(i);}return mode;}public void dfs(TreeNode o) {if (o == null) {return;}dfs(o.left);update(o.val);dfs(o.right);}public void update(int x) {if (x == base) {++count;} else {count = 1;base = x;}if (count == maxCount) {answer.add(base);}if (count > maxCount) {maxCount = count;answer.clear();answer.add(base);}}
}

这段代码定义了一个名为 Solution 的类,用于解决一个与二叉树相关的算法问题:找到给定二叉树中出现次数最多的元素(即众数),并返回这些众数的数组。代码主要包含类的成员变量定义、一个主方法 findMode 以及两个辅助方法 dfsupdate

类成员变量

  • List<Integer> answer:用于存储众数。
  • int base:记录当前处理的元素值。
  • int count:记录当前元素值连续出现的次数。
  • int maxCount:记录目前遇到的最大连续出现次数。

方法 findMode

  • 功能:入口方法,用于启动查找众数的过程,接收二叉树的根节点 root 作为参数。
  • 过程:首先调用深度优先搜索(DFS)方法遍历整个二叉树,然后将找到的所有众数存储在 answer 列表中。最后,将 answer 列表的内容转换为整型数组并返回。

方法 dfs

  • 功能:递归方法,按照中序遍历(左根右)的顺序遍历二叉树。
  • 参数:当前访问的节点 o
  • 过程:递归遍历左子树,然后处理当前节点(调用 update 方法),最后递归遍历右子树。

方法 update

  • 功能:更新当前元素的计数,并根据计数更新众数信息。
  • 参数:当前遍历到的元素值 x
  • 过程:如果当前元素值与 base 相同,则增加 count;否则,重置 count 为 1,并更新 base 为当前元素值。接着,根据 countmaxCount 的关系,更新 maxCount 以及众数列表 answer

整个算法利用了二叉搜索树(BST)的中序遍历特性(遍历结果是升序序列),结合一个简单的计数逻辑来找出出现频率最高的元素。通过遍历过程中维护当前元素的出现次数以及最大出现次数,最终收集到所有的众数并返回。

236. 二叉树的最近公共祖先

方法一:递归

class Solution {private TreeNode ans;public Solution() {this.ans = null;}private boolean dfs(TreeNode root, TreeNode p, TreeNode q) {if (root == null) return false;boolean lson = dfs(root.left, p, q);boolean rson = dfs(root.right, p, q);if ((lson && rson) || ((root.val == p.val || root.val == q.val) && (lson || rson))) {ans = root;} return lson || rson || (root.val == p.val || root.val == q.val);}public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {this.dfs(root, p, q);return this.ans;}
}

这段代码定义了一个名为 Solution 的类,用于求解二叉树中两个指定节点的最近公共祖先(Lowest Common Ancestor, LCA)。类中包含一个成员变量 ans 用于存储找到的最近公共祖先节点,以及几个方法:

  1. 构造方法 Solution():初始化成员变量 ansnull
  2. 私有方法 dfs(TreeNode root, TreeNode p, TreeNode q):这是一个深度优先搜索(Depth First Search, DFS)方法,用于递归遍历二叉树,同时检查当前节点是否为节点 pq 的祖先。它返回一个布尔值,指示以 root 为根的子树中是否包含 pq
    • 如果 root 为空,返回 false,表示该子树不包含 pq
    • 递归遍历左子树和右子树,获取它们是否包含 pq 的信息。
    • 如果当前节点的左子树和右子树中都包含了 pq,或者当前节点是 pq 之一,并且其子树中也包含另一个节点,那么将当前节点设置为 ans,即最近公共祖先。
    • 最后,返回当前子树是否包含 pq(通过 lsonrson 或当前节点值与 pq 相等判断)。
  3. 公共方法 lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q):这是解决问题的接口方法,接收二叉树的根节点 root 以及需要查找最近公共祖先的两个节点 pq。它通过调用 dfs 方法进行遍历,并返回找到的最近公共祖先节点 ans

总之,这段代码实现了一个在二叉树中寻找两个指定节点最近公共祖先的算法,利用了深度优先搜索和递归的思想。通过遍历树并利用递归返回的信息,能够有效确定并返回最近公共祖先节点。

这篇关于代码随想录-Day21的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1009507

相关文章

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

用js控制视频播放进度基本示例代码

《用js控制视频播放进度基本示例代码》写前端的时候,很多的时候是需要支持要网页视频播放的功能,下面这篇文章主要给大家介绍了关于用js控制视频播放进度的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言html部分:JavaScript部分:注意:总结前言在javascript中控制视频播放

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

java之Objects.nonNull用法代码解读

《java之Objects.nonNull用法代码解读》:本文主要介绍java之Objects.nonNull用法代码,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Java之Objects.nonwww.chinasem.cnNull用法代码Objects.nonN

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

在C#中调用Python代码的两种实现方式

《在C#中调用Python代码的两种实现方式》:本文主要介绍在C#中调用Python代码的两种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#调用python代码的方式1. 使用 Python.NET2. 使用外部进程调用 Python 脚本总结C#调

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时