本文主要是介绍嵌入式linux开发 (二十九) 内存管理2.0(1) 内存管理总述,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
硬件讲了 sram sdram ddr3
驱动讲了 控制器初始化 读写内存内存管理2.0主要讲软件对内存的管理(分块及保护及管理)
关于内存管理2.0,其实也讲了一部分,对内存的分段应该就属于内存2.0的 // .code .ro-data .data .bss .stack .heap现在要讲 内存保护(MPU MMU) buddy slab
内存管理流程
- 加载文件到内存
刚加载到内存,还没运行代码的时候,最多只有.code .ro-data .data // 一般为 bootrom建立的
而 .bss .stack .heap 是代码建立起来的.
- .bss .stack .heap的建立
一般是开始运行的用户代码建立的对于用户程序是start.S中的_start对于arm-linux是arch/arm/kernel/head.S 中的 stext
- 更复杂的内存管理
内存管理的主要功能有:内存分配、内存保护、地址映射和内存扩充。
// 涉及到系统,所以接下来要以 rtos 或者linux源码为 参考 讲述内存管理
// 包括系统的 代码开发包括
// 1. 系统开发
// 用来读写并管理真实物理内存,并提供接口
// 给系统提供内存管理接口
// 给用户程序提供内存管理接口
// 2. 应用程序开发
// 由系统加载应用程序到内存,并为应用程序准备好的内存空间.应用程序使用系统提供的api管理系统为应用程序准备好的内存空间.
// 应用程序最好不要绕过这些api访问内存空间我们怎么看到一个系统,一个操作系统包括1. 操作系统内核 // 操作系统代码2. 应用程序A // 应用程序A代码3. 应用程序B // 应用程序B代码
对内存的管理的日益增长的需求及解决方案
- 裸机程序
只有 .code .ro-data .data .bss .stack .heap 不能满足吗?
一开始是裸机程序,安排好这些就够了.
- rtos
需要多道程序并发运行,这就需要内存方面有改善
内存分配:为每道程序分配内存。需要OS支持,并给每个程序的程序内存空间做分块.每一个程序对应一个task_struct结构体,该结构体中一个成员类似 linux内核中的task_struct中的mm成员,指向进程所管理的内存的一个总的抽象的数据结构mm_struct
内存保护:确保每道用户程序都只在自己的内存空间运行,彼此互不干扰。MPU的支持用系统控制处理器(CP15)寄存器来完全定义保护区域基于区域,不是基于页面,控制颗粒度要比VMSA少不支持虚拟到物理地址的映射物理内存地址始终与ARM处理器生成的虚拟地址相同
// 现实是绝大多数rtos都没有用到MPU的功能.
// 只实现了内存管理,调度,IPC,定时器,MUTEX等功能
- linux
地址映射:将地址空间的逻辑地址转换为内存空间与对应的物理地址。MMU的支持用翻译表来定义保护页面基于页面,不是基于区域,控制颗粒度要比PMSA多(MMU允许对内存系统进行细粒度控制)翻译表存储在内存中,然后常用的部分被加载到TLB(TLB通过缓存转换表遍历的结果来降低内存访问的平均成本。)执行完整翻译表查找的过程称为 translation table walk,它由硬件自动执行,并且在执行时间上有很大的开销,至少有一个主内存访问,通常有两个支持虚拟到物理地址的映射由ARM®处理器生成的地址称为虚拟地址MMU允许将此地址映射到不同的物理地址。此物理地址标识正在访问的主内存位置。内存扩充:用于实现请求调用功能,置换功能等。就是内存不够的时候,将不常用的内存数据A 放到flash的文件B里面,然后释放这些不常用的内存A.可使用内存就会增加. 在使用这些不常用内存A的时候,再加载B到内存.// 如果flash够快的话,这就相等于将flash当内存用.同样,也有拿内存当flash 用的,例如ramfs// 一般文件系统是管理flash的,同样我们也可以将一块内存做成一种文件系统ramfs(基于内存的文件系统),此时读写ramfs 文件里面的数据,其实是在操作内存,缺点是掉电就没了.https://blog.csdn.net/No1_tiger/article/details/75126974https://blog.csdn.net/u012489236/article/details/104172649
这篇关于嵌入式linux开发 (二十九) 内存管理2.0(1) 内存管理总述的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!