OK6410A 开发板 (八) 34 linux-5.11 OK6410A 内存管理第二阶段

2024-05-27 15:48

本文主要是介绍OK6410A 开发板 (八) 34 linux-5.11 OK6410A 内存管理第二阶段,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

B __turn_mmu_on符号 - setup_arch->paging_init->bootmem_init->memblock_allow_resize返回
----此时memblock初始化完成,开启了基于虚拟内时代的 memblock内存管理器时代
流程
__turn_mmu_onmcr p15, 0, r0, c1, c0, 0       @ write control reg // 内存管理相关1// 上句执行之后,mmu开启ret r3 // 调用到 __mmap_switched__mmap_switchedadr r4, __mmap_switched_data					// 内存管理相关2...ldmia   r4!, {r0, r1, sp}...bl  __memset									// 内存管理相关3ldmia   r4, {r0, r1, r2, r3} 					...b   start_kernel								// 内存管理相关4start_kernel->setup_archsetup_processor									// 内存管理相关5setup_machine_tags// 根据 board id 匹配 mdesc// parse 所有的 atags// 对于 MEM, 调用 parse_tag_mem32 初始化 memblock.memory.regions	// 内存管理相关6					early_fixmap_init// 建立了一个映射的框架,具体的物理地址和虚拟地址的映射没有去填充			// 内存管理相关7early_ioremap_init								// 内存管理相关8// 为 parse_early_param 做准备// 建立 slot_vir// 没有消费者// 在 OK6410a-linux-5.11 中 没有 early_ioremap_initparse_early_param// parse ...// earlycon// 没有利用 early_ioremap_init 创建的 slot_vir// 在 early_fixmap_init 创建的框架中 填充映射early_mm_init									// 内存管理相关9// [10:14:27]Memory policy: Data cache writebacksetup_dma_zone									// 内存管理相关10adjust_lowmem_bounds							// 内存管理相关11// 调整 memblock.current_limit 的值arm_memblock_init								// 内存管理相关12// 初始化 memblock.reserved.regionsadjust_lowmem_bounds							// 内存管理相关13// 调整 memblock.current_limit 的值early_ioremap_reset								// 内存管理相关14early_ioremap_shutdownafter_paging_init = 1;paging_initprepare_page_table 							// 内存管理相关15// 在 页表地址 处 写入 0map_lowmem									// 内存管理相关16// 映射3组memblock_set_current_limit					// 内存管理相关17dma_contiguous_remap						// 内存管理相关18early_fixmap_shutdown						// 内存管理相关19pmd_clear(fixmap_pmd(va));devicemaps_init								// 内存管理相关20// 映射 14组kmap_init									// 内存管理相关21tcm_init									// 内存管理相关22// 映射 2组top_pmd = pmd_off_k(0xffff0000);zero_page = early_alloc(PAGE_SIZE);			// 内存管理相关23// 第一次使用 memblock 内存管理器的 内存申请APIbootmem_initmemblock_allow_resize					// 内存管理相关24// 到此为止,还没出现 struct page.memblock 时代 物理内存和虚拟内存是怎么管控的1. 页表(物理地址到虚拟地址的映射)// 对应下面的 early map 类 和 map 类2. 按区域 	注册物理内存到 memblock 内存管理器中的 	memblock 变量// 对应下面的 memblock 类
buddy 时代 物理内存和虚拟内存是怎么管控的1. 页表(物理地址到虚拟地址的映射)2. 按物理页 	注册物理内存到 buddy 内存管理器中的 		struct pagememblock 切换 到 buddy , 只需要做1. 不需要做页表的映射(因为memblock时代,已经做完了,buddy直接用就行了)2. 将 注册到memblock内存管理器memblock变量中 的 物理页 注册到 buddy内存管理器中的struct page
  • 内存管理相关1
__turn_mmu_on 写 cp15 寄存器
write control reg// 开MMU// 此语句一开始执行,就代表MMU开启了// 下一句就是 MMU开启后的访问内存流程
  • 内存管理相关2
ldmia   r4!, {r0, r1, sp}将 __bss_start 放入 r0 , 该符号为连接符号,在 System.map 查到地址将 __bss_stop  放入 r1为 .bss 段 清0 做准备将 init_thread_union + THREAD_START_SP 放入 sp设置 栈(.stack)
  • 内存管理相关3
bl  __memset清0 .bss 段
  • 内存管理相关4
这里 与 内存管理无关
只是 解释 一下 在这个 命令运行的时候, 内存 的布局
看的出来,所有的 内存布局 都在 Image二进制文件 里面.code 	是 Image 里面的 _stext	 		-  _etext.rodata	是 Image 里面的 __start_rodata	-  __end_rodata.data 	是 Image 里面的 _sdata			-  _edata.bss 	是 Image 里面的 __bss_start 		-  __bss_stop.stack  是 Image 里面的 init_task + 8K - 8 的位置// arch/arm/include/asm/thread_info.h// https://www.zhihu.com/question/24811279Image 虚拟地址 : 0xC0008000 - 0xC088E547 8.6MB_stext			_etext.code		: 	c0100000 	- 	c0600000__start_rodata	__end_rodata.rodata		: 	c0600000 	- 	c06b6000_sdata			_edata.data			c0800000 	- 	c088e548__bss_start 	__bss_stop.bss		: 	c088e548 	- 	c08c413c	init_thread_union 		init_thread_union + THREAD_START_SP.stack		: 	C0800000	- 	C0801FF8.heap		: 	null
  • 内存管理相关5
[10:14:27]CPU: ARMv6-compatible processor [410fb766] revision 6 (ARMv7), cr=00c5387d
[10:14:27]CPU: PIPT / VIPT nonaliasing data cache, VIPT nonaliasing instruction cachesetup_processorstruct proc_info_list *list = lookup_processor(midr); // __v6_proc_infocpu_cache = *list->cache; // v6_cache_fns

  • 之后的 内存管理相关分类
memblock 类setup_machine_tagsparse_tag_mem32 adjust_lowmem_boundsarm_memblock_init	memblock_allow_resizezero_page = early_alloc(PAGE_SIZE);early map 类 (为 parse_early_param 做准备的映射)early_fixmap_init// 查看提交记录 a5f4c561b3b19a9bc43a81da6382b0098ebbc1fbearly_ioremap_initparse_early_paramearly_ioremap_resetearly_fixmap_shutdown// 查看 提交记录 a5f4c561b3b19a9bc43a81da6382b0098ebbc1fbmap 类(为 linux 运行时 做准备的映射) // 做页表初始化 , 不是 做page初始化early_mm_initprepare_page_tablemap_lowmem	dma_contiguous_remapdevicemaps_initkmap_inittcm_init
memblock 类
填充 memblock 全局变量  的各个成员
memblock_add 		填充 	memblock.memory
memblock_reserve	填充 	memblock.reserved
  • setup_machine_tags
parse_tag_mem32 调用 memblock_add 填充 memblock.memory
  • adjust_lowmem_bounds
调整 memblock.current_limit 的值根据 什么调整  TODO 
  • arm_memblock_init
调用 memblock_reserve	填充 	memblock.reserved
填充完毕, memblock.reserved 中有1. kernel2. 页表(50004000-50008000)3. dma/cma 等
  • memblock_allow_resize
memblock_can_resize = 1;
// 
  • zero_page = early_alloc(PAGE_SIZE);
第一次使用 memblock 内存管理器的 内存申请API
early map 类
  • 内存管理相关7 early_fixmap_init
early_fixmap_init pmd = fixmap_pmd(FIXADDR_TOP); // FIXADDR_TOP : FFEF F000// pmd : c0007ff8pmd_populate_kernel(&init_mm, pmd, bm_pte);// 以 pmd  	  变量的值 为 addr// 以 bm_pte  变量的值 为 value// 在 addr 处 写入 value// 其实写了 两个 pmd// 一个是  addr : c0007ff8 , value : 50728811// 一个是  addr : c0007ffc , value : 50728c11pte_offset_fixmap = pte_offset_early_fixmap;// &bm_pte[pte_index(addr)];early_fixmap_init  的过程是建立 一级页表// 这样子 二级页表的位置是确定的,在 bm_pte 	 地址开始的 1024字节,256项// 消费者 通过 填充二级页表来做映射// 二级页表的内容根据 做的映射关系而变化// 1.二级页表的地址(pte)是固定的,从 c072 8000 - c072 9ffc// 2.映射关系中有一个是固定的,那就是 虚拟地址(在 0xffeff000范围附近) , 虚拟地址通过 __fix_to_virt 获得// 3.消费者必须在 enum fixed_addresses 结构体中.  // 4.消费者同用 同一个 一级页表 (add : c0007ff8)// 5.此时的消费者创建的映射关系是临时性的,消费者创建的映射关系会被销毁掉// 6.对应 enum fixed_addresses 结构体 中的 temporary
c0700000 T __init_begin
c0728000 t bm_pte 	// 1024 字节
c0729000 T v6_cache_fns
c0800000 D __init_end345 static pte_t bm_pte[PTRS_PER_PTE + PTE_HWTABLE_PTRS]                             346     __aligned(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE) __initdata;
// PTRS_PER_PTE  : 512
// PTE_HWTABLE_PTRS : 512
  • 内存管理相关9 parse_early_param
early_param("earlycon", param_setup_earlycon);param_setup_earlyconsetup_earlyconregister_earlycon// mapbase:7f005000port->membase = earlycon_map(port->mapbase, 64);	// membase:ffeff000set_fixmap_io(FIX_EARLYCON_MEM_BASE, paddr & PAGE_MASK); __set_fixmappte_t *pte = pte_offset_fixmap(pmd_off_k(vaddr), vaddr);set_pte_at(NULL, vaddr, pte, pfn_pte(phys >> PAGE_SHIFT, prot));base = (void __iomem *)__fix_to_virt(FIX_EARLYCON_MEM_BASE);base += paddr & ~PAGE_MASK;// addr 	of pte: c07283fc// value 	of pte: 7f005653 
  • 内存管理相关19 early_fixmap_shutdown
early_fixmap_shutdownunsigned long va = fix_to_virt(__end_of_permanent_fixed_addresses - 1); // va = ffeff000pmd_clear(fixmap_pmd(va)); // 将 一级页表 c0007ff8 和 c0007ffc 中的内容清空// 之前通过 一级页表 访问的 二级页表 不能访问了// 即之前通过 early_fixmap 建立的 映射(例如earlycon中 uart 的映射),不能用了// 如果 0 - __end_of_permanent_fixed_addresses(消费者) 还有映射关系在建立(*pte不为0)// map.pfn:7f005,map.virtual:ffeff000,map.length:1000,map.type:0// 标识了 物理地址 7f005 000 - 7f005 000 +1000// 这次如果 不会成真// early_fixmap_shutdown 返回之后,devicemaps_init 会 填充一个page
// map.pfn:7f005,map.virtual:f7005000,map.length:1000,map.type:0
// 标识了 物理地址 7f005 000 - 7f005 000 +1000
map 类
其实是调用 create_mapping 在 0x50004000 - 0x50008000 写入了 pgd 和 ptecreate_mapping 的参数 md 的类型 struct map_desc  中的成员virtual	: 虚拟地址pfn		: 物理地址 去掉 低12位length  : 长度type	: 映射类型(该值被写入页表描述符/页目录表描述符)以下面的例子为例md->virtual:c0000000md->pfn:50000md->length:100000md->type:a
此次创建的映射 为 虚拟地址 c0000000 - c0000000+100000物理地址 50000000 - 50000000+100000
此次映射的pte 范围在 0xc0004000-0xc000741f
page table entry : 页表的地址
  • early_mm_init
pte 中的 值叫做 页表描述符页表描述符 由 物理地址 7f005xxx 中的 7f005和其他控制位 ,例如 653构成构成为:7f005653而这些控制位,是 根据 不同的控制需求 设置的, 这些控制位的组合 在 linux 看来,17// 定义在 arch/arm/include/asm/mach/map.h 和 arch/arm/include/asm/io.h 中// 由 MT_ 开头// 初始化 后 放在 全局变量 mem_types 中而 early_mm_init 就是 初始化 mem_types  的过程
  • prepare_page_table
0 0xc0004000-0xc000741f
之后 做映射关系的话,pte 就从 这个范围 取
  • map_lowmem
建立 物理地址 50000 000 - 50100 000 到 虚拟地址 c0000 000 - c0100 000
建立 物理地址 50100 000 - 50800 000 到 虚拟地址 c0100 000 - c0800 000
建立 物理地址 50800 000 - 60000 000 到 虚拟地址 c0800 000 - d0000 000
  • dma_contiguous_remap
null
因为 dma_mmu_remap_num 等于 0 , 所以什么都不做
  • devicemaps_init
建立 物理地址 50000 000 - 50200 000 到 虚拟地址 ff800 000 - ffa00 000
建立 物理地址 5fffe 000 - 5ffff 000 到 虚拟地址 ffff0 000 - ffff1 000
建立 物理地址 5ffff 000 - 60000 000 到 虚拟地址 ffff1 000 - ffff2 000以下建立了 11 个 设备物理地址的映射 
// map.pfn:7e00f,map.virtual:f6100000,map.length:1000,map.type:0 // S3C64XX_PA_SYSCON
// map.pfn:70000,map.virtual:f6200000,map.length:1000,map.type:0 // S3C64XX_PA_SROM
// map.pfn:7f005,map.virtual:f7005000,map.length:1000,map.type:0 // S3C_PA_UART
// map.pfn:71200,map.virtual:f6000000,map.length:4000,map.type:0 // S3C64XX_PA_VIC0
// map.pfn:71300,map.virtual:f6010000,map.length:4000,map.type:0 // S3C64XX_PA_VIC1
// map.pfn:7f006,map.virtual:f6300000,map.length:4000,map.type:0 // S3C_PA_TIMER
// map.pfn:7f008,map.virtual:f6500000,map.length:1000,map.type:0 // S3C64XX_PA_GPIO
// map.pfn:74108,map.virtual:f6600000,map.length:1000,map.type:0 // S3C64XX_PA_MODEM
// map.pfn:7e004,map.virtual:f6400000,map.length:1000,map.type:0 // S3C64XX_PA_WATCHDOG
// map.pfn:7c100,map.virtual:f6700000,map.length:0400,map.type:0 // S3C64XX_PA_USB_HSPHY
// map.pfn:77100,map.virtual:f7100000,map.length:4000,map.type:0 // S3C_PA_FB
  • kmap_init
做 fixmap 映射
early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START, _PAGE_KERNEL_TABLE); // c0007ff0 , ffc80000 , 0x11arm_pte_alloc(pmd, addr, prot, early_alloc); // c0007ff0,ffc80000,0x11if (pmd_none(*pmd)){ // c0007ff0 为空pte_t *pte = alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);// 申请了 pte , 其实地址在 cfff7000// 大小为 1024 * sizeof(pte)__pmd_populate(pmd, __pa(pte), prot);// addr : 	c0007ff0 , value : 5fff7811// addr : 	c0007ff4 , value : 5fff7c11}return pte_offset_kernel(pmd, addr); // cfff7200// 建立了一级页表 , 位置在 c0007ff0 , 索引 二级页表 c0007ff0(wrong,cfff7200-cfff8000) 
// 一级页表表项已经填充,可索引 二级页表 c0007ff0 (wrong,cfff7200-cfff8000) 
// 二级页表表项还未填充,待消费者填充
// 类似 early_fixmap_init// 1.二级页表的地址(pte)是固定的,从 cfff7200 - cfff9000 (一个pmd所以1K,两个索引2K)
// 2.映射关系中有一个是固定的,那就是 虚拟地址(在 FIXADDR_STARTffc80000  - FIXADDR_ENDfff00000 范围内) , 虚拟地址通过 __fix_to_virt 获得
// 3.消费者必须在 enum fixed_addresses 结构体中.  
// 4.消费者同用 同一个 一级页表 (add : c0007ff0)
// 5.此时的消费者 不同于 early_fixmap_init 的消费者,此时的消费者创建的映射关系一直在,而不会被销毁(shutdown)
// 6.对应 enum fixed_addresses 结构体 中的 permanent
// 7.例如 用于 临时内核映射机制 的 FIX_KMAP_BEGIN FIX_KMAP_END其他 // 在 定义 CONFIG_HIGHMEM 的情况下kmap_initpkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE), PKMAP_BASE, _PAGE_KERNEL_TABLE);// 永久内核映射,用于 从高端内存 alloc_pages 时 建立 内存映射// 和 fixed_addresses 的 FIX_KMAP_BEGIN FIX_KMAP_END 没关系
  • tcm_init
// map.pfn:fffe8,map.virtual:fffe8000,map.length:4000,map.type:d
// map.pfn:fffe0,map.virtual:fffe0000,map.length:4000,map.type:e

这篇关于OK6410A 开发板 (八) 34 linux-5.11 OK6410A 内存管理第二阶段的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1007913

相关文章

NameNode内存生产配置

Hadoop2.x 系列,配置 NameNode 内存 NameNode 内存默认 2000m ,如果服务器内存 4G , NameNode 内存可以配置 3g 。在 hadoop-env.sh 文件中配置如下。 HADOOP_NAMENODE_OPTS=-Xmx3072m Hadoop3.x 系列,配置 Nam

linux-基础知识3

打包和压缩 zip 安装zip软件包 yum -y install zip unzip 压缩打包命令: zip -q -r -d -u 压缩包文件名 目录和文件名列表 -q:不显示命令执行过程-r:递归处理,打包各级子目录和文件-u:把文件增加/替换到压缩包中-d:从压缩包中删除指定的文件 解压:unzip 压缩包名 打包文件 把压缩包从服务器下载到本地 把压缩包上传到服务器(zip

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

Linux 网络编程 --- 应用层

一、自定义协议和序列化反序列化 代码: 序列化反序列化实现网络版本计算器 二、HTTP协议 1、谈两个简单的预备知识 https://www.baidu.com/ --- 域名 --- 域名解析 --- IP地址 http的端口号为80端口,https的端口号为443 url为统一资源定位符。CSDNhttps://mp.csdn.net/mp_blog/creation/editor

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

软考系统规划与管理师考试证书含金量高吗?

2024年软考系统规划与管理师考试报名时间节点: 报名时间:2024年上半年软考将于3月中旬陆续开始报名 考试时间:上半年5月25日到28日,下半年11月9日到12日 分数线:所有科目成绩均须达到45分以上(包括45分)方可通过考试 成绩查询:可在“中国计算机技术职业资格网”上查询软考成绩 出成绩时间:预计在11月左右 证书领取时间:一般在考试成绩公布后3~4个月,各地领取时间有所不同

安全管理体系化的智慧油站开源了。

AI视频监控平台简介 AI视频监控平台是一款功能强大且简单易用的实时算法视频监控系统。它的愿景是最底层打通各大芯片厂商相互间的壁垒,省去繁琐重复的适配流程,实现芯片、算法、应用的全流程组合,从而大大减少企业级应用约95%的开发成本。用户只需在界面上进行简单的操作,就可以实现全视频的接入及布控。摄像头管理模块用于多种终端设备、智能设备的接入及管理。平台支持包括摄像头等终端感知设备接入,为整个平台提

Linux_kernel驱动开发11

一、改回nfs方式挂载根文件系统         在产品将要上线之前,需要制作不同类型格式的根文件系统         在产品研发阶段,我们还是需要使用nfs的方式挂载根文件系统         优点:可以直接在上位机中修改文件系统内容,延长EMMC的寿命         【1】重启上位机nfs服务         sudo service nfs-kernel-server resta

【Linux 从基础到进阶】Ansible自动化运维工具使用

Ansible自动化运维工具使用 Ansible 是一款开源的自动化运维工具,采用无代理架构(agentless),基于 SSH 连接进行管理,具有简单易用、灵活强大、可扩展性高等特点。它广泛用于服务器管理、应用部署、配置管理等任务。本文将介绍 Ansible 的安装、基本使用方法及一些实际运维场景中的应用,旨在帮助运维人员快速上手并熟练运用 Ansible。 1. Ansible的核心概念