OK6410A 开发板 (八) 29 linux-5.11 OK6410A 主要内核线程解析

2024-05-27 15:48

本文主要是介绍OK6410A 开发板 (八) 29 linux-5.11 OK6410A 主要内核线程解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • kthreadd这篇博客简述了 一下 系统内创建的 所有内核线程
// 进程 1 2 的 父进程为 0
// 其他所有内核线程(被[]包括的) 父进程都是 kthreadd
进程ID 所属用户 		 状态  COMMAND进程名		进程创建文件		进程创建函数// 1号用户进程1 root      1412 S    {linuxrc} init 	//init/main.c	kernel_thread// 1号用户进程// 2号内核进程2 root         0 SW   [kthreadd] 		// init/main.c  kernel_thread// 2号内核线程,负责 创建所有的内核线程// 内核的管家进程3 root         0 IW   [kworker/0:0-eve] //kernel/workqueue.c create_worker4 root         0 IW<  [kworker/0:0H-kb]5 root         0 IW   [kworker/u2:0-ev] 	16 root         0 IW   [kworker/0:1-eve]	30 root         0 IW<  [kworker/0:1H-kb]31 root         0 IW<  [kworker/u3:1-xp]48 root         0 IW   [kworker/u2:7-nf]67 root         0 IW<  [kworker/u3:4-xp]// "kworker" is a placeholder process for kernel worker threads, which perform most of the actual processing for the kernel, especially in cases where there are interrupts, timers, I/O, etc. // These typically correspond to the vast majority of any allocated "system" time to running processes. // It is not something that can be safely removed from the system in any way, and is completely unrelated to nepomuk or KDE (except in that these programs may make system calls, which may require the kernel to do something).// 用于执行内核工作队列,分为绑定 CPU (名称格式为 kworker/0:0-eve)和未绑定 CPU(名称格式为 kworker/u3:4-xp)两类。7 root         0 SW   [ksoftirqd/0]		// kernel/softirq.c smpboot_register_percpu_thread// ksoftirqd以与kworker几乎相同的方式处理 softirq// softirq 使用的内核线程ksoftirqd// 模块相关进程// 内存相关进程6 root         0 IW<  [mm_percpu_wq] 	// mm/vmstat.c alloc_workqueue10 root         0 SW   [oom_reaper] 		// mm/oom_kill.c kthread_run11 root         0 IW<  [writeback] 		// mm/backing-dev.c alloc_workqueue12 root         0 SW   [kcompactd0] 		// mm/compaction.c kthread_run19 root         0 SW   [kswapd0] 		// mm/vmscan.c kthread_run// 用于内存回收// 网络相关进程20 root         0 IW<  [nfsiod] 			 // fs/nfs/inode.c alloc_workqueue21 root         0 IW<  [ipv6_addrconf] 	 // net/ipv6/addrconf.c create_workqueue8 root         0 IW<  [netns] 			 // net/core/net_namespace.c create_singlethread_workqueue9 root         0 IW<  [inet_frag_wq] 	 // net/ipv4/inet_fragment.c create_workqueue// 块设备相关进程13 root         0 IW<  [kblockd] 		// block/blk-core.c alloc_workqueue// rpc相关15 root         0 IW<  [rpciod] 			// net/sunrpc/sched.c alloc_workqueue18 root         0 IW<  [xprtiod] 		// net/sunrpc/sched.c alloc_workqueue// 防死机看门狗内核进程14 root         0 SW   [watchdogd] 		// drivers/watchdog/watchdog_dev.c kthread_create_worker// mmc 相关23 root         0 IW<  [sdhci]			// drivers/mmc/host/sdhci.c alloc_workqueue24 root         0 SW   [irq/88-mmc0] 	// drivers/mmc/host/sdhci.c request_threaded_irq// 给中断线程化使用的irq内核线程29 root         0 IW<  [mmc_complete] 	// drivers/mmc/core/block.c alloc_workqueue// 用户进程53 root      4100 S    /sbin/mdev -df64 root     19388 S    /usr/bin/Xorg :0.0 vt01 -s 0 -noreset -allowMouseOpe// 后期 需 重点关注 这些进程
// init kthreadd 
// kworker ksoftirqd 
// mem(5个) kblockd mmc(3个) watchdogd 
  • idle线程

  • init线程

  • kthreadd线程

  • kworker线程

入口是 worker_threadkthreadcreate->threadfn/即worker_threadwoke_up:...recheck:if (!need_more_worker(pool))goto sleep;if (unlikely(!may_start_working(pool)) && manage_workers(worker))goto recheck;do{process_scheduled_worksprocess_one_workworker->current_func(work);}while(keep_working(pool));sleep:schedule();goto woke_up;
  • ksoftirqd 线程
kthreadcreate->threadfn/即run_ksoftirqd__do_softirqstruct softirq_action *h;h = softirq_vec;while ((softirq_bit = ffs(pending))) { h += softirq_bit - 1;h->action(h);h++;}
  • watchdogd 线程

总结 : 
1.watchdogd 线程 是个 kworker 线程
2.定时器的处理函数会提交喂狗任务给 watchdogd 线程
4.watchdogd 线程被调入后喂狗---- 初始化时subsys_initcall_sync(watchdog_init);watchdog_initwatchdog_dev_initwatchdog_kworker = kthread_create_worker(0, "watchdogd"); // 即 kthread -> (create->threadfn/即worker_thread)module_platform_driver(s3c2410wdt_driver).probe      = s3c2410wdt_probe,s3c2410wdt_probewatchdog_register_device__watchdog_register_devicewatchdog_dev_registerwatchdog_cdev_register// 喂狗任务kthread_init_work(&wd_data->work, watchdog_ping_work);// 定时器hrtimer_init(&wd_data->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);wd_data->timer.function = watchdog_timer_expired;----运行时// 定时器时间到了,watchdog_timer_expired被调用
// watchdog_timer_expired 提交喂狗任务 给 watchdog_kworker
watchdog_timer_expiredkthread_queue_work(watchdog_kworker, &wd_data->work);// 喂狗任务 被调用 
watchdog_ping_work__watchdog_ping(wd_data->wdd);wdd->ops->ping(wdd)/即s3c2410wdt_keepalivewritel(wdt->count, wdt->reg_base + S3C2410_WTCNT);
  • mmc 相关线程
//等涉及到 mmc 分析了再说
// 设备驱动相关
  • kblockd 线程
// 等涉及 ext3 分析了再说
// 文件系统相关
  • mem 相关线程
// 等涉及到内存分析了再说
// 内存相关
其他
  • 创建内核线程的API是什么
A.比较高级的API : kernel_thread
B.比较中级的API : kthread_create
C.比较简单的API : alloc_workqueue/create_workqueue/smpboot_register_percpu_thread/request_threaded_irq使用A 的 场景 : 就 两个
使用B 的 场景 : 不超过20个
使用C 的 场景 : 很多,有超过200个内核建议我们使用CC 对于 我们来说是什么
一个创建线程的方法(包括3方面)1.工作者线程的创建 					// 任务的创建完全是内核处理的,我们不需要关心2.工作任务的提交(当然先要创建任务) 	// 任务的创建和提交是我们处理的,需要关心 // 有些是内核处理的3.工作者线程的唤醒 					// 唤醒 是 我们处理的,需要关心 // 有些是内核处理的C 创建的线程(名为target)  会 查询 队列(名为queue)中的任务,然后没有任务(task
)就睡眠
如果有代码将任务(task)插入了该队列(queue),然后唤醒target,此时 target 会执行任务(task)中的处理函数对于内核,这个框架的实现有好几种1. 工作队列2. softirq工作队列1.利用 alloc_workqueue/create_workqueue 完成 工作者线程的创建2.利用 insert_work 						完成 工作任务的提交 	// queue_work 调用的深层函数3.利用 wake_up_worker 					完成 工作者线程的唤醒 // queue_work 调用的深层函数softirq1. 利用 smpboot_register_percpu_thread 	完成 工作者线程的创建2. 利用 or_softirq_pending 				完成 工作任务的提交3. 利用 wakeup_softirqd 				完成 工作者线程的唤醒
softirq机制
处理函数的调用分为两种1. 直接处理 // 对应 __do_softirq  ,但是 __do_softirq  中也会 有 该动作(唤醒 softirqd 处理)执行的条件判断2. 唤醒 softirqd 处理 // 对应 __do_softirqd  , 该函数位于 softirqd 中,是主体函数
原因:处理函数的调用A :1.__do_softirq // 一个函数,直接调用即可,该函数可以直接处理softirq,而不用唤醒 softirqd2.__do_softirqd // 在一个线程里面,使其被调用只能先 唤醒该线程1// linux-5.11 中没有这个函数,而是用的__do_softirq // TODO 
处理函数的调用A的封装:1.invoke_softirq/do_softirq2.wakeup_softirqd
处理函数的调用A的封装的封装:1.irq_exit/netif_rx_ni/local_bn_enable2.raise_softirq/__do_softirq 
处理函数的调用A的封装的封装的封装:1.2.invoke_softirq/do_softirq
处理函数的调用A的封装的封装的封装的封装:1.2.irq_exit/netif_rx_ni/local_bn_enable
  • 引起 __do_softirq 运行的函数
处理函数的调用A :1.__do_softirq // 一个函数,直接调用即可处理函数的调用A的封装:1.invoke_softirq/do_softirq处理函数的调用A的封装的封装:1.irq_exit/netif_rx_ni/local_bn_enable
  • 引起 __do_softirqd 运行的函数
处理函数的调用A :2.__do_softirqd // 在一个线程里面,使其被调用只能先 唤醒该线程1
处理函数的调用A的封装:2.wakeup_softirqd
处理函数的调用A的封装的封装:2.raise_softirq/__do_softirq 
处理函数的调用A的封装的封装的封装:2.invoke_softirq/do_softirq
处理函数的调用A的封装的封装的封装的封装:2.irq_exit/netif_rx_ni/local_bn_enable
  • 同时引起 两者 运行的函数
irq_exit/netif_rx_ni/local_bn_enable
invoke_softirq/do_softirq
__do_softirq 
  • 只引起 __do_softirq(绝对不会引起唤醒softirqd的函数) 运行的函数
  • 只引起 __do_softirqd 运行的函数
raise_softirq
wakeup_softirqd
__do_softirqd 

softirqinit_timers->open_softirq(TIMER_SOFTIRQ, run_timer_softirq);raise_softirq(TIMER_SOFTIRQ);tasklet由软中断实现softirq_init->open_softirq(TASKLET_SOFTIRQ, tasklet_action);tasklet_schedule__tasklet_scheduleraise_softirq_irqoff(TASKLET_SOFTIRQ)内核版本中定义了10个软中断,并且系统不建议用户自己添加软中断,
所以对于软中断基本用于已定义好的功用
而如果用户需要,可以使用其中的一个类型即TASKLET_SOFTIRQinclude/linux/interrupt.h531 /* PLEASE, avoid to allocate new softirqs, if you need not _really_ high         
532    frequency threaded job scheduling. For almost all the purposes                
533    tasklets are more than enough. F.e. all serial device BHs et                  
534    al. should be converted to tasklets, not to softirqs.                         
535  */                                                                              
536                                                                                  
537 enum                                                                             
538 {                                                                                
539     HI_SOFTIRQ=0,                                                                
540     TIMER_SOFTIRQ,                                                               
541     NET_TX_SOFTIRQ,                                                              
542     NET_RX_SOFTIRQ,                                                              
543     BLOCK_SOFTIRQ,                                                               
544     IRQ_POLL_SOFTIRQ,                                                            
545     TASKLET_SOFTIRQ,                                                             
546     SCHED_SOFTIRQ,                                                               
547     HRTIMER_SOFTIRQ,                                                             
548     RCU_SOFTIRQ,    /* Preferable RCU should always be the last softirq */       
549                                                                                  
550     NR_SOFTIRQS                                                                  
551 };
  • __do_softirq运行过程
1.首先调用local_softirq_pending函数取得目前有哪些位存在软件中断2.调用local_bh_disable关闭软中断,其实就是设置正在处理软件中断标记,在同一个CPU上使得不能重入do_softirq函数3.重新设置软中断标记为0,set_softirq_pending重新设置软中断标记为0,这样在之后重新开启中断之后硬件中断中又可以设置软件中断位。3.开启硬件中断4.之后在一个循环中,遍历pending标志的每一位,如果这一位设置就会调用软件中断的处理函数。在这个过程中硬件中断是开启的,随时可以打断软件中断。这样保证硬件中断不会丢失。5.之后关闭硬件中断,查看是否又有软件中断处于pending状态,5.1如果是且restart没有超过10次,并且在本次调用__do_softirq函数过程中没有累计重复进入软件中断处理的次数超过10次,就可以重新调用软件中断处理。5.2如果没有,或超过10,就调用wakeup_softirqd();唤醒内核的一个进程来处理软件中断。// 设立10次的限制,也是为了避免影响系统响应时间。

在这里插入图片描述

这篇关于OK6410A 开发板 (八) 29 linux-5.11 OK6410A 主要内核线程解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1007909

相关文章

Linux流媒体服务器部署流程

《Linux流媒体服务器部署流程》文章详细介绍了流媒体服务器的部署步骤,包括更新系统、安装依赖组件、编译安装Nginx和RTMP模块、配置Nginx和FFmpeg,以及测试流媒体服务器的搭建... 目录流媒体服务器部署部署安装1.更新系统2.安装依赖组件3.解压4.编译安装(添加RTMP和openssl模块

linux下多个硬盘划分到同一挂载点问题

《linux下多个硬盘划分到同一挂载点问题》在Linux系统中,将多个硬盘划分到同一挂载点需要通过逻辑卷管理(LVM)来实现,首先,需要将物理存储设备(如硬盘分区)创建为物理卷,然后,将这些物理卷组成... 目录linux下多个硬盘划分到同一挂载点需要明确的几个概念硬盘插上默认的是非lvm总结Linux下多

Java多线程父线程向子线程传值问题及解决

《Java多线程父线程向子线程传值问题及解决》文章总结了5种解决父子之间数据传递困扰的解决方案,包括ThreadLocal+TaskDecorator、UserUtils、CustomTaskDeco... 目录1 背景2 ThreadLocal+TaskDecorator3 RequestContextH

java父子线程之间实现共享传递数据

《java父子线程之间实现共享传递数据》本文介绍了Java中父子线程间共享传递数据的几种方法,包括ThreadLocal变量、并发集合和内存队列或消息队列,并提醒注意并发安全问题... 目录通过 ThreadLocal 变量共享数据通过并发集合共享数据通过内存队列或消息队列共享数据注意并发安全问题总结在 J

linux进程D状态的解决思路分享

《linux进程D状态的解决思路分享》在Linux系统中,进程在内核模式下等待I/O完成时会进入不间断睡眠状态(D状态),这种状态下,进程无法通过普通方式被杀死,本文通过实验模拟了这种状态,并分析了如... 目录1. 问题描述2. 问题分析3. 实验模拟3.1 使用losetup创建一个卷作为pv的磁盘3.

C语言中自动与强制转换全解析

《C语言中自动与强制转换全解析》在编写C程序时,类型转换是确保数据正确性和一致性的关键环节,无论是隐式转换还是显式转换,都各有特点和应用场景,本文将详细探讨C语言中的类型转换机制,帮助您更好地理解并在... 目录类型转换的重要性自动类型转换(隐式转换)强制类型转换(显式转换)常见错误与注意事项总结与建议类型

MySQL 缓存机制与架构解析(最新推荐)

《MySQL缓存机制与架构解析(最新推荐)》本文详细介绍了MySQL的缓存机制和整体架构,包括一级缓存(InnoDBBufferPool)和二级缓存(QueryCache),文章还探讨了SQL... 目录一、mysql缓存机制概述二、MySQL整体架构三、SQL查询执行全流程四、MySQL 8.0为何移除查

在Rust中要用Struct和Enum组织数据的原因解析

《在Rust中要用Struct和Enum组织数据的原因解析》在Rust中,Struct和Enum是组织数据的核心工具,Struct用于将相关字段封装为单一实体,便于管理和扩展,Enum用于明确定义所有... 目录为什么在Rust中要用Struct和Enum组织数据?一、使用struct组织数据:将相关字段绑

使用Java实现一个解析CURL脚本小工具

《使用Java实现一个解析CURL脚本小工具》文章介绍了如何使用Java实现一个解析CURL脚本的工具,该工具可以将CURL脚本中的Header解析为KVMap结构,获取URL路径、请求类型,解析UR... 目录使用示例实现原理具体实现CurlParserUtilCurlEntityICurlHandler

异步线程traceId如何实现传递

《异步线程traceId如何实现传递》文章介绍了如何在异步请求中传递traceId,通过重写ThreadPoolTaskExecutor的方法和实现TaskDecorator接口来增强线程池,确保异步... 目录前言重写ThreadPoolTaskExecutor中方法线程池增强总结前言在日常问题排查中,