一步步实现知乎热榜采集:Scala与Sttp库的应用

2024-05-27 12:52

本文主要是介绍一步步实现知乎热榜采集:Scala与Sttp库的应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

亿牛云.png

背景

在大数据时代,网络爬虫技术发挥着不可或缺的作用。它不仅能够帮助我们快速地获取互联网上的信息,还能处理和分析这些数据,为我们提供深刻的洞察。知乎,作为中国领先的问答社区,汇聚了各行各业的专家和广大用户的智慧,其内容丰富,涵盖了从科技到艺术的各个领域。因此,知乎的热榜数据不仅反映了公众的关注点,也是研究市场趋势和公众兴趣的宝贵资源。
本文将探讨如何利用Scala语言和Sttp库,结合代理IP技术,有效地采集知乎热榜数据,并对采集的数据进行归类和统计。

正文

我们将详细分步骤讲解如何实现知乎热榜的采集和数据处理,包括环境准备、依赖库的引入、代码实现和数据处理。

环境准备

首先,确保你的系统中安装了Scala和SBT(Scala的构建工具)。如果没有,请按照以下步骤安装:

  1. 安装Scala:可以从Scala官网下载并安装最新版本。
  2. 安装SBT:可以从SBT官网下载并安装。
引入依赖库

在项目的build.sbt文件中,引入Sttp库和相关依赖:

name := "ZhihuHotlistCrawler"version := "0.1"scalaVersion := "2.13.6"libraryDependencies ++= Seq("com.softwaremill.sttp.client3" %% "core" % "3.3.13","com.softwaremill.sttp.client3" %% "async-http-client-backend-future" % "3.3.13","io.circe" %% "circe-parser" % "0.14.1","io.circe" %% "circe-generic" % "0.14.1"
)
代码实现

下面是完整的Scala代码,展示了如何通过代理IP技术,使用Sttp库采集知乎热榜数据,并对数据进行归类和统计:

import sttp.client3._
import sttp.client3.asynchttpclient.future.AsyncHttpClientFutureBackend
import io.circe.parser._
import io.circe.generic.auto._
import scala.concurrent.ExecutionContext.Implicits.global
import scala.concurrent.Future
import java.util.Base64object ZhihuHotlistCrawler {// 代理服务器的配置信息(使用“亿牛云爬虫代理加强版”)private val proxyHost: String = "www.16yun.cn"private val proxyPort: Int = 31111private val proxyUser: String = "your_username"private val proxyPassword: String = "your_password"private val proxyAuth: String = Base64.getEncoder.encodeToString(s"$proxyUser:$proxyPassword".getBytes)// 设置User-Agent和Cookieprivate val userAgent: String = "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.93 Safari/537.36"private val cookies: String = "d_c0=your_cookie_value"def main(args: Array[String]): Unit = {// 初始化Sttp客户端implicit val backend = AsyncHttpClientFutureBackend()// 知乎热榜的URLval url: String = "https://www.zhihu.com/api/v3/feed/topstory/hot-lists/total"// 发送HTTP请求获取知乎热榜数据val response: Future[String] = fetchZhihuHotlist(url)// 处理响应数据response.map { data =>println(s"获取的数据: $data")// 解析并处理数据parseAndProcessZhihuHotlist(data)}.recover {case ex: Exception => println(s"请求失败: ${ex.getMessage}")}}private def fetchZhihuHotlist(url: String)(implicit backend: SttpBackend[Future, Any]): Future[String] = {basicRequest.get(uri"$url").header("User-Agent", userAgent).header("Cookie", cookies).proxy(proxyHost, proxyPort).header("Proxy-Authorization", s"Basic $proxyAuth").send().map(response => response.body match {case Right(data) => datacase Left(error) => throw new RuntimeException(s"请求失败: $error")})}private def parseAndProcessZhihuHotlist(jsonData: String): Unit = {decode[Map[String, Any]](jsonData) match {case Right(data) =>println("解析成功!")val hotList = data("data").asInstanceOf[List[Map[String, Any]]]val categorizedData = categorizeData(hotList)println(s"归类后的数据: $categorizedData")val statistics = generateStatistics(categorizedData)println(s"统计结果: $statistics")case Left(error) =>println(s"解析失败: $error")}}private def categorizeData(hotList: List[Map[String, Any]]): Map[String, List[Map[String, Any]]] = {hotList.groupBy(item => item("target").asInstanceOf[Map[String, Any]]("type").toString)}private def generateStatistics(categorizedData: Map[String, List[Map[String, Any]]]): Map[String, Int] = {categorizedData.mapValues(_.size)}
}

代码说明

  1. 代理服务器配置:我们使用了爬虫代理的域名、端口、用户名和密码,并通过Base64编码进行认证。
  2. HTTP请求设置:通过Sttp库设置User-Agent和Cookie,以模拟真实用户访问。使用代理IP以增强隐私。
  3. 数据处理
    • parseAndProcessZhihuHotlist方法用于解析JSON数据,并调用categorizeData方法对数据进行归类。
    • categorizeData方法根据数据类型将热榜数据分类。
    • generateStatistics方法对归类后的数据进行统计,计算每种类型的数量。

实例

运行上述代码,我们可以获取并解析知乎热榜数据,并进行归类和统计。以下是运行输出的示例:

获取的数据: { "data": [ ... ] }
解析成功!
归类后的数据: Map(article -> List(...), question -> List(...))
统计结果: Map(article -> 10, question -> 15)

通过进一步处理解析后的数据,可以将其存储到数据库或文件中,以便后续分析和使用。

结论

本文详细介绍了如何使用Scala和Sttp库,通过代理IP技术采集知乎热榜数据,并对数据进行归类和统计。通过合理设置HTTP请求头和使用爬虫代理IP,可以有效提高爬虫的稳定性和隐私保护。希望本文的内容能为读者提供实用的参考和指导。

这篇关于一步步实现知乎热榜采集:Scala与Sttp库的应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1007533

相关文章

JavaScript中的isTrusted属性及其应用场景详解

《JavaScript中的isTrusted属性及其应用场景详解》在现代Web开发中,JavaScript是构建交互式应用的核心语言,随着前端技术的不断发展,开发者需要处理越来越多的复杂场景,例如事件... 目录引言一、问题背景二、isTrusted 属性的来源与作用1. isTrusted 的定义2. 为

C#提取PDF表单数据的实现流程

《C#提取PDF表单数据的实现流程》PDF表单是一种常见的数据收集工具,广泛应用于调查问卷、业务合同等场景,凭借出色的跨平台兼容性和标准化特点,PDF表单在各行各业中得到了广泛应用,本文将探讨如何使用... 目录引言使用工具C# 提取多个PDF表单域的数据C# 提取特定PDF表单域的数据引言PDF表单是一

使用Python实现高效的端口扫描器

《使用Python实现高效的端口扫描器》在网络安全领域,端口扫描是一项基本而重要的技能,通过端口扫描,可以发现目标主机上开放的服务和端口,这对于安全评估、渗透测试等有着不可忽视的作用,本文将介绍如何使... 目录1. 端口扫描的基本原理2. 使用python实现端口扫描2.1 安装必要的库2.2 编写端口扫

PyCharm接入DeepSeek实现AI编程的操作流程

《PyCharm接入DeepSeek实现AI编程的操作流程》DeepSeek是一家专注于人工智能技术研发的公司,致力于开发高性能、低成本的AI模型,接下来,我们把DeepSeek接入到PyCharm中... 目录引言效果演示创建API key在PyCharm中下载Continue插件配置Continue引言

MySQL分表自动化创建的实现方案

《MySQL分表自动化创建的实现方案》在数据库应用场景中,随着数据量的不断增长,单表存储数据可能会面临性能瓶颈,例如查询、插入、更新等操作的效率会逐渐降低,分表是一种有效的优化策略,它将数据分散存储在... 目录一、项目目的二、实现过程(一)mysql 事件调度器结合存储过程方式1. 开启事件调度器2. 创

使用Python实现操作mongodb详解

《使用Python实现操作mongodb详解》这篇文章主要为大家详细介绍了使用Python实现操作mongodb的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、示例二、常用指令三、遇到的问题一、示例from pymongo import MongoClientf

SQL Server使用SELECT INTO实现表备份的代码示例

《SQLServer使用SELECTINTO实现表备份的代码示例》在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误,在SQLServer中,可以使用SELECTINT... 在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误。在 SQL Server 中,可以使用 SE

基于Go语言实现一个压测工具

《基于Go语言实现一个压测工具》这篇文章主要为大家详细介绍了基于Go语言实现一个简单的压测工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录整体架构通用数据处理模块Http请求响应数据处理Curl参数解析处理客户端模块Http客户端处理Grpc客户端处理Websocket客户端

Java CompletableFuture如何实现超时功能

《JavaCompletableFuture如何实现超时功能》:本文主要介绍实现超时功能的基本思路以及CompletableFuture(之后简称CF)是如何通过代码实现超时功能的,需要的... 目录基本思路CompletableFuture 的实现1. 基本实现流程2. 静态条件分析3. 内存泄露 bug

C#实现添加/替换/提取或删除Excel中的图片

《C#实现添加/替换/提取或删除Excel中的图片》在Excel中插入与数据相关的图片,能将关键数据或信息以更直观的方式呈现出来,使文档更加美观,下面我们来看看如何在C#中实现添加/替换/提取或删除E... 在Excandroidel中插入与数据相关的图片,能将关键数据或信息以更直观的方式呈现出来,使文档更