一步步实现知乎热榜采集:Scala与Sttp库的应用

2024-05-27 12:52

本文主要是介绍一步步实现知乎热榜采集:Scala与Sttp库的应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

亿牛云.png

背景

在大数据时代,网络爬虫技术发挥着不可或缺的作用。它不仅能够帮助我们快速地获取互联网上的信息,还能处理和分析这些数据,为我们提供深刻的洞察。知乎,作为中国领先的问答社区,汇聚了各行各业的专家和广大用户的智慧,其内容丰富,涵盖了从科技到艺术的各个领域。因此,知乎的热榜数据不仅反映了公众的关注点,也是研究市场趋势和公众兴趣的宝贵资源。
本文将探讨如何利用Scala语言和Sttp库,结合代理IP技术,有效地采集知乎热榜数据,并对采集的数据进行归类和统计。

正文

我们将详细分步骤讲解如何实现知乎热榜的采集和数据处理,包括环境准备、依赖库的引入、代码实现和数据处理。

环境准备

首先,确保你的系统中安装了Scala和SBT(Scala的构建工具)。如果没有,请按照以下步骤安装:

  1. 安装Scala:可以从Scala官网下载并安装最新版本。
  2. 安装SBT:可以从SBT官网下载并安装。
引入依赖库

在项目的build.sbt文件中,引入Sttp库和相关依赖:

name := "ZhihuHotlistCrawler"version := "0.1"scalaVersion := "2.13.6"libraryDependencies ++= Seq("com.softwaremill.sttp.client3" %% "core" % "3.3.13","com.softwaremill.sttp.client3" %% "async-http-client-backend-future" % "3.3.13","io.circe" %% "circe-parser" % "0.14.1","io.circe" %% "circe-generic" % "0.14.1"
)
代码实现

下面是完整的Scala代码,展示了如何通过代理IP技术,使用Sttp库采集知乎热榜数据,并对数据进行归类和统计:

import sttp.client3._
import sttp.client3.asynchttpclient.future.AsyncHttpClientFutureBackend
import io.circe.parser._
import io.circe.generic.auto._
import scala.concurrent.ExecutionContext.Implicits.global
import scala.concurrent.Future
import java.util.Base64object ZhihuHotlistCrawler {// 代理服务器的配置信息(使用“亿牛云爬虫代理加强版”)private val proxyHost: String = "www.16yun.cn"private val proxyPort: Int = 31111private val proxyUser: String = "your_username"private val proxyPassword: String = "your_password"private val proxyAuth: String = Base64.getEncoder.encodeToString(s"$proxyUser:$proxyPassword".getBytes)// 设置User-Agent和Cookieprivate val userAgent: String = "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.93 Safari/537.36"private val cookies: String = "d_c0=your_cookie_value"def main(args: Array[String]): Unit = {// 初始化Sttp客户端implicit val backend = AsyncHttpClientFutureBackend()// 知乎热榜的URLval url: String = "https://www.zhihu.com/api/v3/feed/topstory/hot-lists/total"// 发送HTTP请求获取知乎热榜数据val response: Future[String] = fetchZhihuHotlist(url)// 处理响应数据response.map { data =>println(s"获取的数据: $data")// 解析并处理数据parseAndProcessZhihuHotlist(data)}.recover {case ex: Exception => println(s"请求失败: ${ex.getMessage}")}}private def fetchZhihuHotlist(url: String)(implicit backend: SttpBackend[Future, Any]): Future[String] = {basicRequest.get(uri"$url").header("User-Agent", userAgent).header("Cookie", cookies).proxy(proxyHost, proxyPort).header("Proxy-Authorization", s"Basic $proxyAuth").send().map(response => response.body match {case Right(data) => datacase Left(error) => throw new RuntimeException(s"请求失败: $error")})}private def parseAndProcessZhihuHotlist(jsonData: String): Unit = {decode[Map[String, Any]](jsonData) match {case Right(data) =>println("解析成功!")val hotList = data("data").asInstanceOf[List[Map[String, Any]]]val categorizedData = categorizeData(hotList)println(s"归类后的数据: $categorizedData")val statistics = generateStatistics(categorizedData)println(s"统计结果: $statistics")case Left(error) =>println(s"解析失败: $error")}}private def categorizeData(hotList: List[Map[String, Any]]): Map[String, List[Map[String, Any]]] = {hotList.groupBy(item => item("target").asInstanceOf[Map[String, Any]]("type").toString)}private def generateStatistics(categorizedData: Map[String, List[Map[String, Any]]]): Map[String, Int] = {categorizedData.mapValues(_.size)}
}

代码说明

  1. 代理服务器配置:我们使用了爬虫代理的域名、端口、用户名和密码,并通过Base64编码进行认证。
  2. HTTP请求设置:通过Sttp库设置User-Agent和Cookie,以模拟真实用户访问。使用代理IP以增强隐私。
  3. 数据处理
    • parseAndProcessZhihuHotlist方法用于解析JSON数据,并调用categorizeData方法对数据进行归类。
    • categorizeData方法根据数据类型将热榜数据分类。
    • generateStatistics方法对归类后的数据进行统计,计算每种类型的数量。

实例

运行上述代码,我们可以获取并解析知乎热榜数据,并进行归类和统计。以下是运行输出的示例:

获取的数据: { "data": [ ... ] }
解析成功!
归类后的数据: Map(article -> List(...), question -> List(...))
统计结果: Map(article -> 10, question -> 15)

通过进一步处理解析后的数据,可以将其存储到数据库或文件中,以便后续分析和使用。

结论

本文详细介绍了如何使用Scala和Sttp库,通过代理IP技术采集知乎热榜数据,并对数据进行归类和统计。通过合理设置HTTP请求头和使用爬虫代理IP,可以有效提高爬虫的稳定性和隐私保护。希望本文的内容能为读者提供实用的参考和指导。

这篇关于一步步实现知乎热榜采集:Scala与Sttp库的应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1007533

相关文章

Vue项目的甘特图组件之dhtmlx-gantt使用教程和实现效果展示(推荐)

《Vue项目的甘特图组件之dhtmlx-gantt使用教程和实现效果展示(推荐)》文章介绍了如何使用dhtmlx-gantt组件来实现公司的甘特图需求,并提供了一个简单的Vue组件示例,文章还分享了一... 目录一、首先 npm 安装插件二、创建一个vue组件三、业务页面内 引用自定义组件:四、dhtmlx

Vue ElementUI中Upload组件批量上传的实现代码

《VueElementUI中Upload组件批量上传的实现代码》ElementUI中Upload组件批量上传通过获取upload组件的DOM、文件、上传地址和数据,封装uploadFiles方法,使... ElementUI中Upload组件如何批量上传首先就是upload组件 <el-upl

Docker部署Jenkins持续集成(CI)工具的实现

《Docker部署Jenkins持续集成(CI)工具的实现》Jenkins是一个流行的开源自动化工具,广泛应用于持续集成(CI)和持续交付(CD)的环境中,本文介绍了使用Docker部署Jenkins... 目录前言一、准备工作二、设置变量和目录结构三、配置 docker 权限和网络四、启动 Jenkins

Python3脚本实现Excel与TXT的智能转换

《Python3脚本实现Excel与TXT的智能转换》在数据处理的日常工作中,我们经常需要将Excel中的结构化数据转换为其他格式,本文将使用Python3实现Excel与TXT的智能转换,需要的可以... 目录场景应用:为什么需要这种转换技术解析:代码实现详解核心代码展示改进点说明实战演练:从Excel到

如何使用CSS3实现波浪式图片墙

《如何使用CSS3实现波浪式图片墙》:本文主要介绍了如何使用CSS3的transform属性和动画技巧实现波浪式图片墙,通过设置图片的垂直偏移量,并使用动画使其周期性地改变位置,可以创建出动态且具有波浪效果的图片墙,同时,还强调了响应式设计的重要性,以确保图片墙在不同设备上都能良好显示,详细内容请阅读本文,希望能对你有所帮助...

C# string转unicode字符的实现

《C#string转unicode字符的实现》本文主要介绍了C#string转unicode字符的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录1. 获取字符串中每个字符的 Unicode 值示例代码:输出:2. 将 Unicode 值格式化

python安装whl包并解决依赖关系的实现

《python安装whl包并解决依赖关系的实现》本文主要介绍了python安装whl包并解决依赖关系的实现,文中通过图文示例介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录一、什么是whl文件?二、我们为什么需要使用whl文件来安装python库?三、我们应该去哪儿下

Python脚本实现图片文件批量命名

《Python脚本实现图片文件批量命名》这篇文章主要为大家详细介绍了一个用python第三方库pillow写的批量处理图片命名的脚本,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言源码批量处理图片尺寸脚本源码GUI界面源码打包成.exe可执行文件前言本文介绍一个用python第三方库pi

Java中将异步调用转为同步的五种实现方法

《Java中将异步调用转为同步的五种实现方法》本文介绍了将异步调用转为同步阻塞模式的五种方法:wait/notify、ReentrantLock+Condition、Future、CountDownL... 目录异步与同步的核心区别方法一:使用wait/notify + synchronized代码示例关键

MobaXterm远程登录工具功能与应用小结

《MobaXterm远程登录工具功能与应用小结》MobaXterm是一款功能强大的远程终端软件,主要支持SSH登录,拥有多种远程协议,实现跨平台访问,它包括多会话管理、本地命令行执行、图形化界面集成和... 目录1. 远程终端软件概述1.1 远程终端软件的定义与用途1.2 远程终端软件的关键特性2. 支持的