inux下串口编程简单实例

2024-05-27 11:48
文章标签 简单 编程 实例 串口 inux

本文主要是介绍inux下串口编程简单实例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、   Linux中的串口设备文件存放于/dev目录下,其中串口一,串口二对应设备名依次为“/dev/ttyS0”、“/dev/ttyS1”。在 linux下操作串口与操作文件相同。

2、  在使用串口之前必须设置相关配置,包括:波特率、数据位、校验位、停止位等。串口设置由下面结构体实现:

struct termios{
    tcflag_t c_iflag;        /*input flags*/
    tcflag_t c_oflag;        /*output flags*/
    tcflag_t c_cflag;        /*control flags*/
    tcflag_t c_lflag;        /*local flags*/
    cc_t c_cc[NCCS];         /*control characters*/
};

该结构中c_cflag最为重要,可设置波特率、数据位、校验位、停止位。在设置波特率时需在数字前加上‘B’,如B9600、B19200。使用其需通过“与”“或”操作方式。

常用的串口控制函数:

Tcgetattr         取属性(termios结构)

Tcsetattr         设置属性(termios结构)

cfgetispeed       得到输入速度

Cfgetospeed       得到输出速度

Cfsetispeed       设置输入速度

Cfsetospeed       设置输出速度

tcflush           刷清未决输入和/或输出

3、  串口的配置

(1) 保存原先串口配置使用tcgetattr(fd,&oldtio)函数:

       struct termios newtio,oldtio;

       tcgetattr(fd,&oldtio);

(2) 激活选项有CLOCAL和CREAD,用于本地连接和接收使能。

       newtio.c_cflag | =  CLOCAL | CREAD;

(3) 设置波特率,使用函数cfsetispeed、 cfsetospeed

    cfsetispeed(&newtio, B115200);

       cfsetospeed(&newtio, B115200);

(4) 设置数据位,需使用掩码设置。

       newtio.c_cflag &= ~CSIZE;

       newtio.c_cflag |= CS8;

(5) 设置奇偶校验位,使用c_cflag和c_iflag。

       设置奇校验:

              newtio.c_cflag |= PARENB;

              newtio.c_cflag |= PARODD;

              newtio.c_iflag |= (INPCK | ISTRIP);

       设置偶校验:

              newtio.c_iflag |= (INPCK | ISTRIP);

              newtio.c_cflag |= PARENB;

              newtio.c_cflag &= ~PARODD;

(6) 设置停止位,通过激活c_cflag中的CSTOPB实现。若停止位为1,则清除CSTOPB,若停止位为2,则激活CSTOPB。

              newtio.c_cflag &= ~CSTOPB;

(7) 设置最少字符和等待时间,对于接收字符和等待时间没有特别要求时,可设为0。

              newtio.c_cc[VTIME]  = 0;

              newtio.c_cc[VMIN] = 0;

(8) 处理要写入的引用对象

tcflush函数刷清(抛弃)输入缓存(终端驱动程序已接收到,但用户程序尚未读)或输出缓存(用户程序已经写,但尚未发送)。

int tcflush(int filedes, int queue )

queue数应当是下列三个常数之一:

• TCIFLUSH 刷清输入队列。

• TCOFLUSH 刷清输出队列。

• TCIOFLUSH 刷清输入、输出队列。

       如:tcflush(fd,TCIFLUSH);

(9) 激活配置。在完成配置后,需激活配置使其生效。使用tsettattr()函数。原型:

int tcgetattr(int filedes, struct termios *                            termptr);

int tcsetattr(int filedes, int opt, const struct                termios * termptr);

tcsetattr的参数opt使我们可以指定在什么时候新的终端属性才起作用。opt可以指定为下列常数中的一个:

• TCSANOW 更改立即发生。

• TCSADRAIN 发送了所有输出后更改才发生。若更改输出参数则应使用此选择项。

• TCSAFLUSH 发送了所有输出后更改才发生。更进一步,在更改发生时未读的所有输入数据都被删除(刷清)

使用如:tcsetattr(fd,TCSANOW,&newtio)

4、  在配置完串口的相关属性后,就可对串口进行打开,读写操作了。其使用方式与文件操作一样,区别在于串口是一个终端设备。

(1)    打开串口

fd = open( "/dev/ttyS0", O_RDWR|O_NOCTTY|O_NDELAY);

   Open函数中除普通参数外,另有两个参数O_NOCTTY和O_NDELAY。

   O_NOCTTY: 通知linux系统,这个程序不会成为这个端口的控制终端。

   O_NDELAY: 通知linux系统不关心DCD信号线所处的状态(端口的另一端是否激活或者停止)。

(2) 恢复串口的状态为阻塞状态,用于等待串口数据的读入。用fcntl函数:

       fcntl(fd, F_SETFL, 0);

(3) 接着,测试打开的文件描述府是否引用一个终端设备,以进一步确认串口是否正确打开。

       isatty(STDIN_FILENO);

(4) 串口的读写与普通文件一样,使用read,write函数。

       read(fd,buf,8);

       write(fd,buf,8);

以下为一简单的程序实例:

#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <errno.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <termios.h>
#include <stdlib.h>

int set_opt(int fd,int nSpeed, int nBits, char nEvent, int nStop)
{
  struct termios newtio,oldtio;
  if ( tcgetattr( fd,&oldtio) != 0) { 
    perror("SetupSerial 1");
    return -1;
  }
  bzero( &newtio, sizeof( newtio ) );
  newtio.c_cflag |= CLOCAL | CREAD; 
  newtio.c_cflag &= ~CSIZE; 

  switch( nBits )
  {
  case 7:
    newtio.c_cflag |= CS7;
    break;
  case 8:
    newtio.c_cflag |= CS8;
    break;
  }

  switch( nEvent )
  {
  case 'O':
    newtio.c_cflag |= PARENB;
    newtio.c_cflag |= PARODD;
    newtio.c_iflag |= (INPCK | ISTRIP);
    break;
  case 'E': 
    newtio.c_iflag |= (INPCK | ISTRIP);
    newtio.c_cflag |= PARENB;
    newtio.c_cflag &= ~PARODD;
    break;
  case 'N': 
    newtio.c_cflag &= ~PARENB;
    break;
  }

switch( nSpeed )
  {
  case 2400:
    cfsetispeed(&newtio, B2400);
    cfsetospeed(&newtio, B2400);
    break;
  case 4800:
    cfsetispeed(&newtio, B4800);
    cfsetospeed(&newtio, B4800);
    break;
  case 9600:
    cfsetispeed(&newtio, B9600);
    cfsetospeed(&newtio, B9600);
    break;
  case 115200:
    cfsetispeed(&newtio, B115200);
    cfsetospeed(&newtio, B115200);
    break;
  default:
    cfsetispeed(&newtio, B9600);
    cfsetospeed(&newtio, B9600);
    break;
  }
  if( nStop == 1 )
    newtio.c_cflag &= ~CSTOPB;
  else if ( nStop == 2 )
  newtio.c_cflag |= CSTOPB;
  newtio.c_cc[VTIME] = 0;
  newtio.c_cc[VMIN] = 0;
  tcflush(fd,TCIFLUSH);
  if((tcsetattr(fd,TCSANOW,&newtio))!=0)
  {
    perror("com set error");
    return -1;
  }
  printf("set done!\n");
  return 0;
}

int open_port(int fd,int comport)
{
  char *dev[]={"/dev/ttyS0","/dev/ttyS1","/dev/ttyS2"};
  long vdisable;
  if (comport==1)
  { fd = open( "/dev/ttyS0", O_RDWR|O_NOCTTY|O_NDELAY);
    if (-== fd){
      perror("Can't Open Serial Port");
      return(-1);
    }
    else 
      printf("open ttyS0 .....\n");
  }
  else if(comport==2)
  { fd = open( "/dev/ttyS1", O_RDWR|O_NOCTTY|O_NDELAY);
    if (-== fd){
      perror("Can't Open Serial Port");
      return(-1);
    }
    else 
      printf("open ttyS1 .....\n");
  }
  else if (comport==3)



这篇关于inux下串口编程简单实例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1007397

相关文章

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

hdu2289(简单二分)

虽说是简单二分,但是我还是wa死了  题意:已知圆台的体积,求高度 首先要知道圆台体积怎么求:设上下底的半径分别为r1,r2,高为h,V = PI*(r1*r1+r1*r2+r2*r2)*h/3 然后以h进行二分 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#includ

Linux 网络编程 --- 应用层

一、自定义协议和序列化反序列化 代码: 序列化反序列化实现网络版本计算器 二、HTTP协议 1、谈两个简单的预备知识 https://www.baidu.com/ --- 域名 --- 域名解析 --- IP地址 http的端口号为80端口,https的端口号为443 url为统一资源定位符。CSDNhttps://mp.csdn.net/mp_blog/creation/editor

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

usaco 1.3 Prime Cryptarithm(简单哈希表暴搜剪枝)

思路: 1. 用一个 hash[ ] 数组存放输入的数字,令 hash[ tmp ]=1 。 2. 一个自定义函数 check( ) ,检查各位是否为输入的数字。 3. 暴搜。第一行数从 100到999,第二行数从 10到99。 4. 剪枝。 代码: /*ID: who jayLANG: C++TASK: crypt1*/#include<stdio.h>bool h

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

uva 10387 Billiard(简单几何)

题意是一个球从矩形的中点出发,告诉你小球与矩形两条边的碰撞次数与小球回到原点的时间,求小球出发时的角度和小球的速度。 简单的几何问题,小球每与竖边碰撞一次,向右扩展一个相同的矩形;每与横边碰撞一次,向上扩展一个相同的矩形。 可以发现,扩展矩形的路径和在当前矩形中的每一段路径相同,当小球回到出发点时,一条直线的路径刚好经过最后一个扩展矩形的中心点。 最后扩展的路径和横边竖边恰好组成一个直

poj 1113 凸包+简单几何计算

题意: 给N个平面上的点,现在要在离点外L米处建城墙,使得城墙把所有点都包含进去且城墙的长度最短。 解析: 韬哥出的某次训练赛上A出的第一道计算几何,算是大水题吧。 用convexhull算法把凸包求出来,然后加加减减就A了。 计算见下图: 好久没玩画图了啊好开心。 代码: #include <iostream>#include <cstdio>#inclu

uva 10130 简单背包

题意: 背包和 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <stack>#include <vector>#include <queue>#include <map>

【编程底层思考】垃圾收集机制,GC算法,垃圾收集器类型概述

Java的垃圾收集(Garbage Collection,GC)机制是Java语言的一大特色,它负责自动管理内存的回收,释放不再使用的对象所占用的内存。以下是对Java垃圾收集机制的详细介绍: 一、垃圾收集机制概述: 对象存活判断:垃圾收集器定期检查堆内存中的对象,判断哪些对象是“垃圾”,即不再被任何引用链直接或间接引用的对象。内存回收:将判断为垃圾的对象占用的内存进行回收,以便重新使用。