2024.5.26.python.exercise

2024-05-26 23:44
文章标签 python 26 exercise 2024.5

本文主要是介绍2024.5.26.python.exercise,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

# # 导入包
# from pyecharts.charts import Bar, Timeline
# from pyecharts.options import LabelOpts, TitleOpts
# from pyecharts.globals import ThemeType
#
# # 从文件中读取信息
# GDP_file = open("1960-2019全球GDP数据.csv", "r", encoding="GB2312")
# GDP_data = GDP_file.readlines()
#
# # 关闭文件
# GDP_file.close()
#
# # 规整文件
# GDP_data.pop(0)
#
# # 定义一个字典来存文件
# GDP_dict = {}
# for line_data in GDP_data:
#     GDP_year = int(line_data.split(",")[0])
#     GDP_country = line_data.split(",")[1]
#     GDP = float(line_data.split(",")[2])
#     try:
#         GDP_dict[GDP_year].append([GDP_country, GDP])
#     except KeyError:
#         GDP_dict[GDP_year] = []
#         GDP_dict[GDP_year].append([GDP_country, GDP])
#
# # 创建时间线(并且设置其主题)
# GDP_line = Timeline({"theme": ThemeType.ROMA})
#
# # 排序数据对象
# sort_years = sorted(GDP_dict.keys())
#
# for year in GDP_dict:
#     GDP_dict[year].sort(key=lambda element: element[1], reverse=True)
#     year_data = GDP_dict[year][:8:]
#     x_data = []
#     y_data = []
#     # 为x,y准备数据
#     for country_data in year_data:
#         x_data.append(country_data[0])
#         y_data.append(country_data[1] / 100000000)
#     # 建立柱状图
#     GDP_bar = Bar()
#     x_data.reverse()
#     y_data.reverse()
#     GDP_bar.add_xaxis(x_data)
#     GDP_bar.add_yaxis("GDP(亿)", y_data, label_opts=LabelOpts(position="right"))
#
#     # 反转x-y轴
#     GDP_bar.reversal_axis()
#
#     # 设置每一年的标题
#     GDP_bar.set_global_opts(
#         title_opts=TitleOpts(title=f"{year}年全球前八国家的GDP")
#     )
#
#     # 创建时间线
#     GDP_line.add(GDP_bar, str(year))
#
# # 调整时间轴播放
# GDP_line.add_schema(
#     play_interval=3000,  # 时间移动的时间
#     is_timeline_show=True,  # 展示时间线
#     is_auto_play=True,  # 自动播放
#     is_loop_play=True  # 循环播放
# )
#
# # 生成柱状图
# GDP_line.render("1960-2019年全球GDP top8变化图(new).html")# 导入包
from pyecharts.charts import Bar, Timeline
from pyecharts.options import LabelOpts, TitleOpts
from pyecharts.globals import ThemeType# 从文件中得到GDP数据
GDP_file = open("1960-2019全球GDP数据.csv", "r", encoding="GB2312")
GDP_data = GDP_file.readlines()# 关闭文件
GDP_file.close()# 规整数据
GDP_data.pop(0)# 创建GDP字典,便于读数据
GDP_dict = {}# 为字典读数据
for line in GDP_data:year = int(line.split(",")[0])  # 得到年份数据country = line.split(",")[1]  # 得到国家数据GDP = float(line.split(",")[2])  # 得到GDP数据# 每一年的第一个数据进入字典的时候是没有列表的,所以说要先try一下try:GDP_dict[year].append([country, GDP])  # 假如列表已经存在,则可以直接appendexcept KeyError:GDP_dict[year] = []  # 假如列表不存在,则先创造再添加GDP_dict[year].append([country, GDP])# 排序年份
sort_year = sorted(GDP_dict.keys())# 创建时间线(并且对其进行初始设置)
GDP_timeline = Timeline({"theme": ThemeType.CHALK})# 准备创造柱状图
for year in GDP_dict:GDP_dict[year].sort(key=lambda element: element[1], reverse=True)year_data = GDP_dict[year][:8:]x_data = []y_data = []for country in year_data:x_data.append(country[0])y_data.append(country[1] / 100000000)# 创建柱状图GDP_bar = Bar()x_data.reverse()y_data.reverse()GDP_bar.add_xaxis(x_data)GDP_bar.add_yaxis("GDP(亿)", y_data, label_opts=LabelOpts(position="right"))# 反转x-y轴GDP_bar.reversal_axis()# 设置每年的标题GDP_bar.set_global_opts(title_opts=TitleOpts(title=f"{year}年全球GDP排名前八国家"))# 时间线增加GDP_timeline.add(GDP_bar, str(year))# 设置时间线
GDP_timeline.add_schema(play_interval=3000,  # 时间移动的时间is_timeline_show=True,  # 展示时间线is_auto_play=True,  # 自动播放is_loop_play=True  # 循环播放
)# 生成柱状图
GDP_timeline.render("1960-2019年全球GDP top8变化图(mine).html")

这篇关于2024.5.26.python.exercise的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1005925

相关文章

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

Python中你不知道的gzip高级用法分享

《Python中你不知道的gzip高级用法分享》在当今大数据时代,数据存储和传输成本已成为每个开发者必须考虑的问题,Python内置的gzip模块提供了一种简单高效的解决方案,下面小编就来和大家详细讲... 目录前言:为什么数据压缩如此重要1. gzip 模块基础介绍2. 基本压缩与解压缩操作2.1 压缩文

Python设置Cookie永不超时的详细指南

《Python设置Cookie永不超时的详细指南》Cookie是一种存储在用户浏览器中的小型数据片段,用于记录用户的登录状态、偏好设置等信息,下面小编就来和大家详细讲讲Python如何设置Cookie... 目录一、Cookie的作用与重要性二、Cookie过期的原因三、实现Cookie永不超时的方法(一)

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四