[处理器芯片]-3 超标量CPU实现之取指

2024-05-26 17:20

本文主要是介绍[处理器芯片]-3 超标量CPU实现之取指,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 超标量CPU结构

前端(Frontend)

前端负责从程序中提取指令,并将其转换为微操作送入CPU的流水线中。

1)取指单元:从指令缓存或内存中提取指令,并将其送入流水线。

2)分支预测单元:负责预测分支指令的执行路径,以提前加载正确的指令,减少分支带来的流水线停顿。

3)译码器:将获取到的指令解码成CPU内部理解的格式,以便后续阶段的执行。

4)寄存器重命名:将逻辑寄存器重命名为物理寄存器,以解决数据依赖关系,避免数据冒险,并提高指令级并行度。

5)分发和发射:将已经译码并重命名的指令发送到相应的执行单元,并在需要时进行缓存或排队。在发射阶段,指令被提交给调度器进行后续处理。

6)调度器:负责根据指令的依赖关系和可用资源,将指令调度到可用的执行单元中,包括确定指令的执行顺序,管理执行单元的利用率,并确保指令的正确执行。调度器还负责管理处理器的资源,包括执行单元、寄存器文件等,它会跟踪资源的使用情况,以确保所有指令都能够得到充分利用,同时避免资源冲突和竞争。

后端(Backend)

后端负责实际执行指令和处理数据。

1)执行单元:包括整数单元、浮点单元、加载/存储单元等,负责执行各种不同类型的指令。

2)寄存器文件:存储CPU中的通用寄存器和状态寄存器,执行单元从寄存器文件中读取操作数并将结果写回。

3)乱序引擎:实现乱序执行功能,动态地重新排序指令以最大程度地利用可用的执行单元。

4)访存单元:处理加载和存储操作,包括数据缓存和地址生成单元等。

5)写回单元:将执行单元计算得到的结果写回到寄存器文件或内存中。

2 取指单元

取指单元是CPU运行第一个阶段,主要由指令缓存和计算取指地址的逻辑单元构成,指令缓存是该阶段的核心内容。

1)内存结构

CPU 内存结构通常分为多层,从高速、小容量的高级缓存到低速、大容量的主存储器,以及可能的外部存储器(例如磁盘),每一层都有不同的访问速度、容量和成本。

L1 缓存(一级缓存):

现代处理器的 L1 缓存一般分为 L1 ICache(指令缓存)和 L1 DCache(数据缓存),每个缓存大小通常在16KB到64KB之间,访问延迟在1个时钟周期。

L2 缓存(二级缓存):

L2 缓存的大小通常在数百KB到数MB之间,访问延迟相对于 L1 缓存会更长,大约在5到15个时钟周期之间。

L3 缓存(三级缓存):

L3 缓存通常是共享的,用于多个 CPU 核心之间共享数据。它的大小通常在几MB到数十MB之间,访问延迟相对于 L2 缓存会更长,大约在10到30个时钟周期之间。

主存储器(主内存):

主存储器是 CPU 访问数据的主要来源,其容量通常在几GB到数十GB之间,访问延迟相对于缓存会更长,通常在几十到数百个时钟周期之间。

2)指令缓存

指令缓存是一种特殊的高速缓存用于存储 CPU 执行的指令,提供快速访问指令的能力,以减少指令的访问延迟。

指令缓存分类

直接映射缓存:指令地址被映射到缓存中的一个固定的位置,每个指令地址只有一个可能的缓存位置。直接映射缓存的实现简单,在命中时可实现快速访问,但容易产生冲突。

全相联缓存:指令可以存储在缓存中的任何位置,没有固定的映射规则,每个指令地址都可以在缓存中的任何地方找到。全相联缓存通常需要更复杂的替换算法来管理缓存中的数据。

组相联缓存:缓存被分为多个组,每个组包含多个缓存行,指令地址被映射到某个组中的一个缓存行。组相联缓存结合了直接映射缓存和全相联缓存的优点,提供了更好的性能和成本效益。

替换策略选择

当需要访问的内存卡不在缓存中,触发缓存未命中,需要在缓存中选择剔除块进行替换,替换策略决定了当缓存满了时,哪个缓存块应该被替换掉,以便为新的数据腾出空间。

先进先出(FIFO):替换最早进入缓存的块,不管最近的访问情况。使用一个队列来跟踪缓存块的进入顺序,最早进入的块在需要替换时最先被移出,实现简单硬件开销低,但命中率可能较低,不能有效利用缓存块的访问历史信息。

最近最少使用(LRU):最近最少使用的指令被替换出去,需要维护一个访问记录列表或计数器,来跟踪每个缓存块的使用历史。具体实现可以通过链表、堆栈或计数器来记录每个缓存块的最近使用情况,具备较高的命中率,尤其是在具有较强局部性的访问模式下表现良好,是最简单的也是使用最广泛的一种替换策略。

随机替换策略(Random):随机选择一个缓存行来替换,命中率通常较低,无法利用缓存块的访问历史信息。

最少使用(LFU):替换访问次数最少的缓存块,假设使用频率较低的数据将来也不会被频繁访问。需要维护每个缓存块的访问计数器,对于具有固定访问模式的数据集,表现良好;对于变化频繁的访问模式,效果不佳。

最近最常使用(MRU):替换最近最常使用的缓存块。需要跟踪每个缓存块的使用情况,与 LRU 类似,对于某些特定的工作负载,可能有优势。

分段最近最少使用(SLRU):将缓存分为多个段例如冷热段,新加载的数据首先进入冷段,冷段的数据如果再次访问则提升到热段。分段缓存的管理需要两个或多个 LRU 列表,每个段有独立的 LRU 管理,提供更高的灵活性和命中率。

实例说明

L1 缓存:通常会采用 LRU 或 SLRU,因为这些缓存非常小(16KB到64KB),命中率至关重要,且访问速度要非常快。

L2 缓存:可能采用 SLRU 或 LFU,因为 L2 缓存的大小较大(256KB到2MB),需要在命中率和硬件开销之间取得平衡。

L3 缓存:可能采用更简单的替换策略如 FIFO 或 Random,因为 L3 缓存共享多个核心,且更关注缓存管理的整体效率。

指令缓存访问步骤

地址生成:CPU 发出指令访问请求时,会提供一个指令地址。

索引计算:根据缓存的组织结构,计算出指令地址在缓存中的索引。

索引比较:将索引与缓存中的索引进行比较,确定指令是否在缓存中。

标记比较:如果缓存中有匹配的索引,进一步比较标记以确定是否是所需的指令。

数据读取:如果命中缓存,就从缓存中读取所需的指令;如果缓存未命中,就从主存或下一级缓存中读取指令,并将其存储到缓存中以备后续访问。

这篇关于[处理器芯片]-3 超标量CPU实现之取指的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1005107

相关文章

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

Android实现任意版本设置默认的锁屏壁纸和桌面壁纸(两张壁纸可不一致)

客户有些需求需要设置默认壁纸和锁屏壁纸  在默认情况下 这两个壁纸是相同的  如果需要默认的锁屏壁纸和桌面壁纸不一样 需要额外修改 Android13实现 替换默认桌面壁纸: 将图片文件替换frameworks/base/core/res/res/drawable-nodpi/default_wallpaper.*  (注意不能是bmp格式) 替换默认锁屏壁纸: 将图片资源放入vendo

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

Kubernetes PodSecurityPolicy:PSP能实现的5种主要安全策略

Kubernetes PodSecurityPolicy:PSP能实现的5种主要安全策略 1. 特权模式限制2. 宿主机资源隔离3. 用户和组管理4. 权限提升控制5. SELinux配置 💖The Begin💖点点关注,收藏不迷路💖 Kubernetes的PodSecurityPolicy(PSP)是一个关键的安全特性,它在Pod创建之前实施安全策略,确保P

工厂ERP管理系统实现源码(JAVA)

工厂进销存管理系统是一个集采购管理、仓库管理、生产管理和销售管理于一体的综合解决方案。该系统旨在帮助企业优化流程、提高效率、降低成本,并实时掌握各环节的运营状况。 在采购管理方面,系统能够处理采购订单、供应商管理和采购入库等流程,确保采购过程的透明和高效。仓库管理方面,实现库存的精准管理,包括入库、出库、盘点等操作,确保库存数据的准确性和实时性。 生产管理模块则涵盖了生产计划制定、物料需求计划、

C++——stack、queue的实现及deque的介绍

目录 1.stack与queue的实现 1.1stack的实现  1.2 queue的实现 2.重温vector、list、stack、queue的介绍 2.1 STL标准库中stack和queue的底层结构  3.deque的简单介绍 3.1为什么选择deque作为stack和queue的底层默认容器  3.2 STL中对stack与queue的模拟实现 ①stack模拟实现

基于51单片机的自动转向修复系统的设计与实现

文章目录 前言资料获取设计介绍功能介绍设计清单具体实现截图参考文献设计获取 前言 💗博主介绍:✌全网粉丝10W+,CSDN特邀作者、博客专家、CSDN新星计划导师,一名热衷于单片机技术探索与分享的博主、专注于 精通51/STM32/MSP430/AVR等单片机设计 主要对象是咱们电子相关专业的大学生,希望您们都共创辉煌!✌💗 👇🏻 精彩专栏 推荐订阅👇🏻 单片机