2024.5.25.python.exercise

2024-05-26 08:36
文章标签 python 25 exercise 2024.5

本文主要是介绍2024.5.25.python.exercise,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

# # 导入数据处理的包
# # from pyecharts.charts import Line
# # from pyecharts.options import TitleOpts, LegendOpts, ToolboxOpts, VisualMapOpts, LabelOpts
# # import json
# #
# # # 打开文件
# # file_us = open("美国.txt", "r", encoding="UTF-8")
# # file_jp = open("日本.txt", "r", encoding="UTF-8")
# # file_in = open("印度.txt", "r", encoding="UTF-8")
# #
# # # 读文件
# # us_data = file_us.read()
# # jp_data = file_jp.read()
# # in_data = file_in.read()
# #
# # # 规整文件内容
# # us_data = us_data.replace("jsonp_1629344292311_69436(", "")
# # jp_data = jp_data.replace("jsonp_1629350871167_29498(", "")
# # in_data = in_data.replace("jsonp_1629350745930_63180(", "")
# #
# # us_data = us_data[:-2:]
# # jp_data = jp_data[:-2:]
# # in_data = in_data[:-2:]
# #
# # # json 转化为字典
# # us_data = json.loads(us_data)
# # jp_data = json.loads(jp_data)
# # in_data = json.loads(in_data)
# #
# # # 得到trend数据
# # us_trend_data = us_data["data"][0]["trend"]
# # jp_trend_data = jp_data["data"][0]["trend"]
# # in_trend_data = in_data["data"][0]["trend"]
# #
# # # 得到x轴的数据(x轴是2020全年)
# # us_x_data = us_trend_data["updateDate"][:314]
# # jp_x_data = jp_trend_data["updateDate"][:314]
# # in_x_data = in_trend_data["updateDate"][:314]
# #
# # # 得到y轴的数据(y轴数据是三个国家的数据)
# # us_y_data = us_trend_data["list"][0]["data"][:314]
# # jp_y_data = jp_trend_data["list"][0]["data"][:314]
# # in_y_data = in_trend_data["list"][0]["data"][:314]
# #
# # # 开始绘图
# # # 创建一个图
# # line = Line()
# #
# # # 创建图的x轴
# # line.add_xaxis(us_x_data)
# #
# # # 创建图的y轴
# # line.add_yaxis("美国确诊人数是", us_y_data, label_opts=LabelOpts(is_show=False))
# # line.add_yaxis("日本的确诊人数是", jp_y_data, label_opts=LabelOpts(is_show=False))
# # line.add_yaxis("印度的确诊人数是", in_y_data, label_opts=LabelOpts(is_show=False))
# #
# # # 配置图的全局设置
# # line.set_global_opts(
# #     title_opts=TitleOpts(title="2020年美国、日本、印度新冠日感染人数", pos_left="center", pos_bottom="1%"),
# #     legend_opts=LegendOpts(is_show=True),
# #     toolbox_opts=ToolboxOpts(is_show=True),
# #     visualmap_opts=VisualMapOpts(is_show=True)
# # )
# #
# # # 生成图
# # line.render()
# #
# # # 关闭文件
# # file_us.close()
# # file_jp.close()
# # file_in.close()
#
#
# # 导入要用到的包
# import json
# from pyecharts.charts import Line
# from pyecharts.options import LabelOpts, TitleOpts, ToolboxOpts, VisualMapOpts, LegendOpts
#
# # 读文件
# file_us = open("美国.txt", "r", encoding="UTF-8")
# file_jp = open("日本.txt", "r", encoding="UTF-8")
# file_in = open("印度.txt", "r", encoding="UTF-8")
# us_data = file_us.read()
# jp_data = file_jp.read()
# in_data = file_in.read()
#
# # 读取完毕,关闭文件
# file_us.close()
# file_jp.close()
# file_in.close()
#
# # 规整文件内容
# us_data = us_data.replace("jsonp_1629344292311_69436(", "")
# jp_data = jp_data.replace("jsonp_1629350871167_29498(", "")
# in_data = in_data.replace("jsonp_1629350745930_63180(", "")
# us_data = us_data[:-2:]
# jp_data = jp_data[:-2:]
# in_data = in_data[:-2:]
#
# # json转化为字典
# us_data = json.loads(us_data)
# jp_data = json.loads(jp_data)
# in_data = json.loads(in_data)
#
# # 得到每个国家的trend
# us_trend = us_data["data"][0]["trend"]
# jp_trend = jp_data["data"][0]["trend"]
# in_trend = in_data["data"][0]["trend"]
#
# # 得到x轴内容
# us_x = us_trend["updateDate"][:314:]
# jp_x = jp_trend["updateDate"][:314:]
# in_x = in_trend["updateDate"][:314:]
#
# # 得到y轴内容
# us_y = us_trend["list"][0]["data"][:314:]
# jp_y = jp_trend["list"][0]["data"][:314:]
# in_y = in_trend["list"][0]["data"][:314:]
#
# #开始画线
# line = Line()
#
# # 创建x轴
# line.add_xaxis(us_x)
#
# # 创建y轴
# line.add_yaxis("美国确诊新冠的人数", us_y, label_opts=LabelOpts(is_show=False))
# line.add_yaxis("日本确诊新冠的人数", jp_y, label_opts=LabelOpts(is_show=False))
# line.add_yaxis("印度确诊新冠的人数", in_y, label_opts=LabelOpts(is_show=False))
#
# # 调整全局设置
# line.set_global_opts(
#     title_opts=TitleOpts(title="2020年美国、日本、印度每日确诊新冠人数", pos_left="center", pos_bottom="1%"),
#     legend_opts=LegendOpts(is_show=True),
#     toolbox_opts=ToolboxOpts(is_show=True),
#     visualmap_opts=VisualMapOpts(is_show=True)
# )
#
# # 生成图
# line.render()# # 导入地图构建使用的包
# from pyecharts.charts import Map
# from pyecharts.options import VisualMapOpts
#
# # 创建一个地图
# China_map = Map()
#
# # 给地图准备数据
# data = [
#     ("北京市", 100),
#     ("上海市", 95),
#     ("深圳市", 90),
#     ("重庆市", 80),
#     ("四川省", 15)
# ]
#
# # 给地图添加数据
# China_map.add("中国城市发展地图", data, "china")
#
# # 设置全局变量
# China_map.set_global_opts(
#     visualmap_opts=VisualMapOpts(
#         is_show=True,
#         is_piecewise=True,
#         pieces=[
#             {"min": 1, "max": 19, "label": "1-19", "color": "#CCFFFF"},
#             {"min": 20, "max": 39, "label": "20-39", "color": "#FFFF99"},
#             {"min": 40, "max": 59, "label": "40-59", "color": "#FF9966"},
#             {"min": 60, "max": 79, "label": "60-79", "color": "#FF6666"},
#             {"min": 80, "max": 100, "label": "80-99", "color": "#CC3333"}
#         ]
#     )
# )
#
# # 生成地图
# China_map.render()# # 导入疫情地图需要的包
# import json
# from pyecharts.charts import Map
# from pyecharts.options import VisualMapOpts
#
# # 打开需要的数据文件
# China_map = open("疫情.txt", "r", encoding="UTF-8")
# Ch_map = China_map.read()
#
# # 关闭文件
# China_map.close()
#
# # 得到所有地区数据
# area_map = json.loads(Ch_map)
# area_map = area_map["areaTree"][0]["children"]
#
# # 将数据成对封装成元组,然后再将元组封装至列表中,然后用列表给地图提供数据
# China_list = []
# for province in area_map:
#     province_name = province["name"] + "省"
#     province_confirm = province["total"]["confirm"]
#
#     China_list.append((province_name, province_confirm))
#
# # 创建一个疫情地图
# China_Map = Map()
#
# # 为疫情地图加入数据
# China_Map.add("中国全国新冠确诊人数图", China_list, "china")
#
# # 为疫情地图调整全局设置,使得更加美观
# China_Map.set_global_opts(
#     visualmap_opts=VisualMapOpts(
#         is_show=True,
#         is_piecewise=True,
#         pieces=[
#             {"min": 1, "max": 99, "label": "1-99人确诊", "color": "#CCFFFF"},
#             {"min": 100, "max": 1999, "label": "100-1999人确诊", "color": "#FFFF99"},
#             {"min": 2000, "max": 9999, "label": "2000-9999人确诊", "color": "#FF9966"},
#             {"min": 10000, "max": 39999, "label": "10000-39999人确诊", "color": "#FF6666"},
#             {"min": 40000, "label": "40000人以上确诊", "color": "#CC3333"}
#         ]
#     )
# )
#
# # 生成疫情地图
# China_Map.render()# 导入生成重庆疫情地图的包
import json
from pyecharts.charts import Map
from pyecharts.options import VisualMapOpts# 读数据文件
cq_file = open("疫情.txt", "r", encoding="UTF-8")
cq_data = cq_file.read()# 关闭文件
cq_file.close()# 将数据定位到重庆
cq_data = json.loads(cq_data)
cq_data = cq_data["areaTree"][0]["children"][18]["children"]# 将区县名字取出,和每个区县的确诊人数构成元组存入列表
cq_list = []
for area in cq_data:area_name = area["name"]area_confirm = area["total"]["confirm"]cq_list.append((area_name, area_confirm))# 创造一个地图
cq_map = Map()# 向重庆疫情地图中加入值
cq_map.add("重庆新冠确诊人数图", cq_list, "重庆")# 调整重庆疫情地图的全局设置(主要是改变颜色)
cq_map.set_global_opts(visualmap_opts=VisualMapOpts(is_show=True,is_piecewise=True,pieces=[{"min": 1, "max": 9, "label": "1-9人确诊", "color": "#FFFF99"},{"min": 10, "max": 19, "label": "10-19人确诊", "color": "#FF9966"},{"min": 20, "max": 29, "label": "20-29人确诊", "color": "#FF6666"},{"min": 30, "label": "30人以上确诊", "color": "#CC3333"},])
)# 生成重庆的疫情地图
cq_map.render()#
# # 导入柱状图的包
# from pyecharts.charts import Bar
#
# # 创建一个柱状图
# bar1 = Bar()
# bar1.add_xaxis(["中国", "美国", "英国"])
# bar1.add_yaxis("1900年GDP总量", [10, 20, 30])
#
# # 生成图
# bar1.render()
#
# # 导入时间图的包
# from pyecharts.charts import Bar
# from pyecharts.options import VisualMapOpts
# from pyecharts.charts import Timeline
# from pyecharts.globals import ThemeType
#
# # 根据时间点创建多个坐标图
# bar1 = Bar()
# bar1.add_xaxis(["中国", "美国", "英国"])
# bar1.add_yaxis("GDP", [10, 20, 30])
#
# bar2 = Bar()
# bar2.add_xaxis(["中国", "美国", "英国"])
# bar2.add_yaxis("GDP", [40, 120, 85])
#
# bar3 = Bar()
# bar3.add_xaxis(["中国", "美国", "英国"])
# bar3.add_yaxis("GDP", [500, 600, 430])
#
# # 创建时间轴
# timeline = Timeline({"theme": ThemeType.LIGHT})
# timeline.add(bar1, "1900年GDP总量")
# timeline.add(bar2, "1949年GDP总量")
# timeline.add(bar3, "2024年GDP总量")
#
# # 调整时间轴播放
# timeline.add_schema(
#     play_interval=3000,
#     is_timeline_show=True,
#     is_auto_play=True,
#     is_loop_play=True
# )
#
# # 生成时间轴图
# timeline.render("从清朝到现在的三国GDP变化.html")# 最后一舞(1960-2019年全球GDP top8变化图)
# 导包
from pyecharts.charts import Bar, Timeline
from pyecharts.options import LabelOpts, TitleOpts
from pyecharts.globals import ThemeType# 读取数据文件信息
GDP_f = open("1960-2019全球GDP数据.csv", "r", encoding="GB2312")
GDP_data = GDP_f.readlines()  # GDP_data 是列表# 关闭文件
GDP_f.close()# 规整数据文件信息
GDP_data.pop(0)# 定义一个字典来存储数据
GDP_data_dict = {}
for line in GDP_data:year = int(line.split(",")[0])  # 得到年份country = line.split(",")[1]  # 得到国家GDP = float(line.split(",")[2])  # 得到GDP(因为有些数字是科学计数法,所以说转化为float来用)try:GDP_data_dict[year].append([country, GDP])except KeyError:GDP_data_dict[year] = []GDP_data_dict[year].append([country, GDP])# 构建timeline对象
timeline = Timeline({"theme": ThemeType.LIGHT})# 排序数据对象
sort_year = sorted(GDP_data_dict.keys())for years in sort_year:GDP_data_dict[years].sort(key=lambda element: element[1], reverse=True)year_data = GDP_data_dict[years][0:8]  # 只取得某一年中GDP前八的国家x_data = []y_data = []for country_gdp in year_data:     # 从GDP前8的国家里面再取,作为柱状图的x-y轴x_data.append(country_gdp[0])  # 国家名字y_data.append(country_gdp[1] / 100000000)  # 国家当年的GDP# 建立柱状图bar = Bar()x_data.reverse()y_data.reverse()bar.add_xaxis(x_data)bar.add_yaxis("GDP(亿)", y_data, label_opts=LabelOpts(position="right"))# 反转x-y轴bar.reversal_axis()# 设置每一年的标题bar.set_global_opts(title_opts=TitleOpts(title=f"{years}年全球前八国家的GDP"))# 创建时间线timeline.add(bar, str(years))  # 添加一个时间线# 调整时间轴播放
timeline.add_schema(play_interval=3000,  # 时间移动的时间is_timeline_show=True,  # 展示时间线is_auto_play=True,  # 自动播放is_loop_play=True  # 循环播放
)# 生成柱状图
timeline.render("1960-2019年全球GDP top8变化图.html")

这篇关于2024.5.25.python.exercise的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1003958

相关文章

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

Python安装时常见报错以及解决方案

《Python安装时常见报错以及解决方案》:本文主要介绍在安装Python、配置环境变量、使用pip以及运行Python脚本时常见的错误及其解决方案,文中介绍的非常详细,需要的朋友可以参考下... 目录一、安装 python 时常见报错及解决方案(一)安装包下载失败(二)权限不足二、配置环境变量时常见报错及

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操