MPLS LDP原理与配置

2024-05-25 22:20
文章标签 配置 原理 mpls ldp

本文主要是介绍MPLS LDP原理与配置,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.LDP基本概念
(1)LDP协议概述

(2)LDP会话、LDP邻接体、LDP对等体

(3)LSR ID 与LDP ID

(4)LDP消息

⦁    按照消息的功能,LDP消息一共可以分为四大类型:发现消息(Discovery Message),会话消息(Session Message),通告消息(Advertisement Message)和通知消息(Notification Message)。
⦁    发现消息:用来宣告和维护网络中一个LSR的存在;用于通告和维护网络中LSR的存在,如Hello报文。
⦁    会话消息:用于建立、维护和终止LDP对等体之间的会话,如Initialization报文、KeepAlive报文。
⦁    通告消息:用来生成、改变和删除FEC的标签映射;
⦁    通知消息:用来宣告告警和错误信息。
⦁    LDP消息承载在UDP或TCP之上,端口号均为646 。其中发现消息用来发现邻居,承载在UDP报文上。其他消息的传递要求可靠而有序,所以LDP使用TCP建立会话,会话、通告和通知消息都基于TCP传递。

(5)LDP报文封装

⦁    LDP头部长度为10Byte,包括Version,PDU Length和LDP Identifier三部分。
⦁    Version占用2Byte,表示LDP版本号,当前版本号为1。
⦁    PDU Length占用2Byte,以字节为单位表示除了Version和PDU Length以外的其他部分的总长度。
⦁    LDP Identifier,即LDP ID,长度6Byte,其中前4Byte用来唯一标识一个LSR,后2Byte用来表示LSR的标签空间。
⦁    LDP消息包含五个部分。
⦁    U占用1个bit,为Unknown Message bit。当LSR收到一个无法识别的消息时,该消息的U=0时,LSR会返回给该消息的生成者一个通告,当U=1时,忽略该无法识别的消息,不发送通告给生成者。
⦁    Message Length占用2个bytes,以字节为单位表示Message ID、Mandatory Parameters和Optional Parameters的总长度。
⦁    Message ID占用32个bit,用来标识一个消息。
⦁    Mandatory Parameters和Optional Parameters分别为可变长的该消息的必须的参数和可选的参数。
⦁    Message Type表示具体的消息类型,目前LDP定义的常用的消息有Notification,Hello,Initialization,KeepAlive,Address,Address Withdraw,Label Mapping,Label Request,Label Abort Request,Label Withdraw,Label Release。

2.LDP工作原理
(1)LDP会话状态机

LDP Session协商过程可以通过状态机来描述。如图所示,有5种状态。分别是Non-Existent,Initialized,OpenRec,OpenSent,Operational。
Non-Existent状态:该状态为LDP Session最初的状态,在此状态双方发送HELLO消息,选举主动方,在收到TCP连接建立成功事件的触发后变为Initialized状态。
Initialized状态:该状态下分为主动方和被动方两种情况,主动方将主动发送Initialization消息,转向OpenSent 状态,等待回应的Initialization消息;被动方在此状态等待主动方发给自己的Initialization消息,如果收到的Initialization消息的参数可以接受,则发送Initialization和KeepAlive转向OpenRec状态。主动方和被动方在此状态下收到任何非Initialization消息或等待超时时,都会转向Non-Existent状态。
OpenSent 状态:此状态为主动方发送Initialization消息后的状态,在此状态等待被动方回答Initialization消息和KeepAlive消息,如果收到的Initialization消息中的参数可以接受则转向OpenRec状态,如果参数不能接受或Initialization消息超时则断开TCP连接转向Non-Existent状态。
OpenRec状态:在此状态不管主动方还是被动方都是发出KeepAlive后的状态,在等待对方回应KeepAlive,只要收到KeepAlive消息就转向Operational状态;如果收到其它消息或KeepAlive超时则转向Non-Existent状态。
Operational状态:该状态是LDP Session成功建立的标志。在此状态下可以发送和接收所有其它的LDP消息。在此状态如果KeepAlive超时或收到致命错误的Notification消息(Shutdown消息)或者自己主动发送Shutdown消息主动结束会话,都会转向Non-Existent状态。
LDP状态切换信息可以通过指令debug mpls ldp session看到。

(2)LDP会话建立 - 发现阶段与TCP连接建立

除了基本发现机制外,可以通过拓展发现机制发现非直连的远端邻接体,该内容不属于课程的重点,详细内容可以查阅RFC5036相关内容。
LDP的传输地址用于与邻居建立TCP连接。
两台LSR之间在建立LDP会话之前,需要先建立TCP连接,以便进行LDP协议报文的交换。
设备的传输地址被包含在LDP Hello报文中,LSR通过Hello报文知晓邻居的传输地址。
在使用Hello报文发现邻居并且知道了对方的传输地址后,邻居之间就会开始尝试TCP三次握手(基于传输地址),并且交互LDP的初始化报文、标签映射报文等,这些报文都使用双方的传输地址作为源、目的IP地址。
LSR必须拥有到达邻居的传输地址的路由。
缺省情况下,公网的LDP传输地址等于设备的LSR ID,私网的传输地址等于接口的主IP地址。
在接口视图下,使用mpls ldp transport-address命令,可以修改传输地址。

(3)LDP会话建立-会话建立与保持

(4)LDP邻居状态

(5)LDP会话状态

LDP会话的状态:
NonExistent:表示LDP会话的最初状态。在此状态双方互相发送Hello消息,在收到TCP连接建立成功事件的触发后变为Initialized状态。
Initialized:表示LDP会话处于初始化状态。
Open Sent:表示LDP会话进入初始化状态后,主动方给被动方发送了Initialized消息,并等待对方的回应。
Open Recv:表示LDP会话进入初始化状态后,当双方都收到了对方发送的KeepAlive消息后,LDP会话进入Operational状态。
Operational:表示LDP会话建立成功。

3.LDP标签分发
(1)标签的发布和管理

(2)上游与下游

(3)标签发布模式-DU模式

标签分配:LSR从本地标签空间中取出一个标签与FEC绑定。
标签分发:LSR将标签与FEC的绑定关系通知给上游LSR。
标签发布方式为DU时,系统默认支持LDP为所有对等体分标签,即每个节点都可以向所有的对等体发布标签映射关系,不再区分上下游关系。因为在只给上游对等体分标签情况下,发送标签映射消息的时候,要根据路由信息对会话的上下游关系进行确认。

(4)标签发布方式-DOD模式

只有上游邻居向自己请求标签映射时,LSR才会通告标签映射给该邻居

(5)标签分配控制方式-独立模式

标签分配控制方式需要与标签发布方式结合使用:
在使用DU作为标签分发方式的情况下,如图所示,R2和R3对192.168.4.0/24这条FEC,可以在上游LSR无请求,且自身没有收到下游LSR的标签绑定信息的情况下,主动向上游LSR通告标签绑定信息。
采用DoD作为标签发布方式时,如图所示,R2和R3对192.168.4.0/24这条FEC,只要收到上游LSR的标签请求消息,可以在自身没有收到下游LSR的标签绑定信息的情况下,向上游LSR通告标签绑定信息。

(6)标签分配控制方式-有序模式

当标签控制方式为Ordered,只有当LSR收到特定FEC下一跳发送的特定FEC标签映射消息或者LSR是LSP的出口节点时,LSR才可以向上游发送标签映射消息。
当标签分发方式为DU时,如图所示,对于192.168.4.0/24这条FEC,不论上游LSR是否有请求,必须收到下游LSR对此FEC的标签绑定信息才向上游LSR发布标签绑定信息,所以必须由Egress LSR,也就是R4作为LSP建立的“起点”。
当标签发布方式采用DoD时,如图所示,对于192.168.4.0/24这条FEC,只有收到上游LSR请求的请求,且自身已经收到下游LSR的标签绑定信息的情况下,才向上游LSR通告标签绑定信息。因此,必须由Ingress LSR(R1)发起请求,逐跳请求到Egress LSR(R4),最终由R4开始,向上游建立LSP。

(7)标签保留-自由模式

当基于IP网络部署MPLS时,LSR根据IP路由表判断接收到的标签映射是否来自下一跳。
Liberal方式的最大优点在于路由发生变化时能够快速建立新的LSP进行数据转发,因为Liberal方式保留了所有的标签。缺点是需要分发和维护不必要的标签映射。
DU标签分发方式下,如果采用Liberal保持方式,则R3保留所有LDP邻居 R2和R5发来的关于192.168.1.0/24这个FEC的标签,无论该R2和R5是否是IP路由表中到达192.168.1.0/24的下一跳。
DoD标签分发方式下,如果采用Liberal保持方式, LSR会向所有LDP邻居请求标签。但通常来说,DoD分发方式都会和Conservative保持方式搭配使用。

(8)标签保留-保守模式

Conservative方式的优点在于只需保留和维护用于转发数据的标签,以达到节约标签的目的。
当使用DU标签分发方式时,LSR可能从多个LDP邻居收到到同一网段的标签映射消息,如图中R3会分别从R2和R5收到网段192.168.1.0/24的标签映射消息。如果采用Conservative保持方式,则R3只保留下一跳R2发来的标签,丢弃非下一跳R5发来的标签。
当使用DoD标签分发方式时, LSR根据路由信息只向它的下一跳请求标签。
当网络拓扑变化引起下一跳邻居改变时:
使用自由标签保持方式,LSR可以直接利用原来非下一跳邻居发来的标签,迅速重建LSP,但需要更多的内存和标签空间。
使用保守标签保持方式,LSR只保留来自下一跳邻居的标签,节省了内存和标签空间,但LSP的重建会比较慢。
保守标签保持方式通常与DoD方式一起,用于标签空间有限的LSR。

(9)PHP特性

在标签发布时,R3为作为192.168.3.0/24这条FEC的Egress LSR。分配标签时,R3为该FEC分配了标签3,并将该标签绑定信息通告给R2。
在数据转发时,R2作为到达192.168.3.0的次末跳(倒数第二跳),发现出标签值为3,于是将标签头部弹出,将IP报文转发给R3,而R3则仅需执行一次查询操作(查询FIB表)即可获得相应的转发信息,转发效率得到了提升。

(10)隐式空标签与显式空标签(1)

(11)隐式空标签与显式空标签(2)

在MPLS视图下,执行命令label advertise { explicit-null | implicit-null | non-null },配置向倒数第二跳分配的标签。
根据参数的不同,可以配置Egress向倒数第二跳分配不同的标签。
缺省情况下,使用的是implicit-null,Egress向倒数第二跳节点分配隐式空标签,值为3。
如果配置的是explicit-null,Egress节点向倒数第二跳分配显式空标签,值为0。当需要支持MPLS QoS属性时,可以选用explicit-null。
如果配置的是non-null,Egress向倒数第二跳正常分配标签,即分配的标签值不小于16。

4.LDP工作过程详解
(1)组网介绍

华为设备目前缺省模式为下游自主方式(DU)+ 有序标签分配控制方式(Ordered)+ 自由标签保持方式(Liberal)。
对于从R1进入,到达192.168.4.0/24的数据,R1为Ingress LSR,R4为Egress LSR。

(2)标签分发-Egress LSR

注:缺省情况下,根据32位的主机IP路由触发LDP建立LSP。可以通过手工配置触发非32位路由的LSP建立。

(3)标签分发-Transit LSR

注:当R2发生故障时,OSPF路由将会重新收敛,此时R1的路由表中192.168.4.0/24路由的下一跳将会切换至R3,此时R1将启用R3所通告的、关于192.168.4.0/24的标签。

(4)标签分发-Ingress LSR

当R1收到发往192.168.4.1的IP报文时,首先在其FIB表中查询该目的IP地址,它发现所匹配的表项的Tunnel ID为非0,因此继续在NHLFE中查询该Tunnel ID,然后意识到需要将对该IP报文压入标签并进行标签转发,出接口为GE0/0/0、下一跳为R2、出站标签为1021,于是为报文插入标签头部并转发出去。

下一跳标签转发项(Next Hop Label Forwarding Entry) 下一跳标记转发入口NHLFE

(5)标签转发-Igress LSR

当R1收到发往192.168.4.1的IP报文时,首先在其FIB表中查询该目的IP地址,它发现所匹配的表项的Tunnel ID为非0,因此继续在NHLFE中查询该Tunnel ID,然后意识到需要将对该IP报文压入标签并进行标签转发,出接口为GE0/0/0、下一跳为R2、出站标签为1021,于是为报文插入标签头部并转发出去。

(6)标签转发-Transit LSR

当R2收到携带1021标签的标签报文时,查询ILM,根据ILM对应到NHLFE中的表项。于是,R2对该标签报文通过swap操作将标签更换为1041,并从相应的接口转发出去。

(7)标签转发-Engress LSR

当R4收到携带1041标签的标签报文时,查询ILM,根据ILM查询到操作为Pop。于是,R4对该标签报文通过Pop操作将最外层标签剥离,此时该报文已经变成了标准IP报文,R4将对该IP报文执行标准的IP转发流程。
R4在转发该报文时分别查询了LFIB和FIB表,作为最后Egress LSR,其存在转发效率提升的可能性,怎么做?

(8)在MPLS中,运行LDP协议的LSR的操作小结

5.LDP基础配置
(1)LDP基本配置命令(1)

(2)LDP基本配置命令(2)
(3)LDP基本配置命令(3)

6.案例拓扑

以AR1为例子

[czyAR1]mpls lsr-id 10.0.1.1

[czyAR1]mpls 
[czyAR1]mpls ldp
[czyAR1]inter g0/0/0
[czyAR1-GigabitEthernet0/0/0]mpls ldp

因为192.168.1.0/24不是32掩码的路由,所以要额外配置触发LSP建立:

备注这里触发LSP建立的时候会导致AR4学不到AR1的10.0.1.1,目前我还没搞清楚是什么原理,如果需要让24位的网络和环回口都被学习到的话需要lsp-trigger all

[czyAR1]ip ip-prefix ldp permit 192.168.1.0 24
[czyAR1]mpls
[czyAR1-mpls]lsp-trigger ip-prefix ldp

同理AR4也是

[czyAR4]ip ip-prefix ldp permit 192.168.4.0 24
[czyAR4]mpls 
[czyAR4-mpls]lsp-trigger ip-prefix ldp

验证

7.总结

这篇关于MPLS LDP原理与配置的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1002779

相关文章

配置springboot项目动静分离打包分离lib方式

《配置springboot项目动静分离打包分离lib方式》本文介绍了如何将SpringBoot工程中的静态资源和配置文件分离出来,以减少jar包大小,方便修改配置文件,通过在jar包同级目录创建co... 目录前言1、分离配置文件原理2、pom文件配置3、使用package命令打包4、总结前言默认情况下,

MySQL中的MVCC底层原理解读

《MySQL中的MVCC底层原理解读》本文详细介绍了MySQL中的多版本并发控制(MVCC)机制,包括版本链、ReadView以及在不同事务隔离级别下MVCC的工作原理,通过一个具体的示例演示了在可重... 目录简介ReadView版本链演示过程总结简介MVCC(Multi-Version Concurr

VScode连接远程Linux服务器环境配置图文教程

《VScode连接远程Linux服务器环境配置图文教程》:本文主要介绍如何安装和配置VSCode,包括安装步骤、环境配置(如汉化包、远程SSH连接)、语言包安装(如C/C++插件)等,文中给出了详... 目录一、安装vscode二、环境配置1.中文汉化包2.安装remote-ssh,用于远程连接2.1安装2

Redis多种内存淘汰策略及配置技巧分享

《Redis多种内存淘汰策略及配置技巧分享》本文介绍了Redis内存满时的淘汰机制,包括内存淘汰机制的概念,Redis提供的8种淘汰策略(如noeviction、volatile-lru等)及其适用场... 目录前言一、什么是 Redis 的内存淘汰机制?二、Redis 内存淘汰策略1. pythonnoe

windos server2022的配置故障转移服务的图文教程

《windosserver2022的配置故障转移服务的图文教程》本文主要介绍了windosserver2022的配置故障转移服务的图文教程,以确保服务和应用程序的连续性和可用性,文中通过图文介绍的非... 目录准备环境:步骤故障转移群集是 Windows Server 2022 中提供的一种功能,用于在多个

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

关于Maven中pom.xml文件配置详解

《关于Maven中pom.xml文件配置详解》pom.xml是Maven项目的核心配置文件,它描述了项目的结构、依赖关系、构建配置等信息,通过合理配置pom.xml,可以提高项目的可维护性和构建效率... 目录1. POM文件的基本结构1.1 项目基本信息2. 项目属性2.1 引用属性3. 项目依赖4. 构

龙蜥操作系统Anolis OS-23.x安装配置图解教程(保姆级)

《龙蜥操作系统AnolisOS-23.x安装配置图解教程(保姆级)》:本文主要介绍了安装和配置AnolisOS23.2系统,包括分区、软件选择、设置root密码、网络配置、主机名设置和禁用SELinux的步骤,详细内容请阅读本文,希望能对你有所帮助... ‌AnolisOS‌是由阿里云推出的开源操作系统,旨

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

mysql-8.0.30压缩包版安装和配置MySQL环境过程

《mysql-8.0.30压缩包版安装和配置MySQL环境过程》该文章介绍了如何在Windows系统中下载、安装和配置MySQL数据库,包括下载地址、解压文件、创建和配置my.ini文件、设置环境变量... 目录压缩包安装配置下载配置环境变量下载和初始化总结压缩包安装配置下载下载地址:https://d