在RT-Thread下为MPU手搓以太网MAC驱动-2

2024-05-25 16:44

本文主要是介绍在RT-Thread下为MPU手搓以太网MAC驱动-2,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • MAC驱动兼容不同的MPU平台
      • MAC驱动中断处理代码
      • MAC驱动下MDIO访问接口的实现
    • MAC驱动支持不同的PHY芯片
      • 对PHY设备的抽象

这是个人驱动开发过程中做的一些记录,仅代表个人意见和理解,不喜勿喷

  • MAC驱动需要兼容不同的MPU平台

MAC驱动兼容不同的MPU平台

MAC驱动中断处理代码

在MAC驱动下,提供了通用的中断处理代码,在通用中断处理代码下会调用每个MAC驱动实际注册的中断处理函数:

static void h3_macplib_interrupt(int vector, void *param)
{struct h3_macplib_dev *macplib_dev;RT_ASSERT(param != RT_NULL);macplib_dev = (struct h3_macplib_dev *)param;RT_ASSERT((int)macplib_dev->irqnum == vector);macplib_dev->mac_ops->macdev_interrupt(&macplib_dev->mac_dev);
}

MAC驱动在向RT-Thread注册network device时,所提供的初始化接口的实现:

static rt_err_t h3_macplib_initial(rt_device_t dev)
{struct mac_async_filter filter = {0};struct h3_macplib_dev *macplib_dev;macplib_dev = (struct h3_macplib_dev *)dev->user_data;RT_ASSERT(macplib_dev != RT_NULL);/* Disable GMAC interrupt and register IRQ handler */rt_hw_interrupt_mask(macplib_dev->irqnum);rt_hw_interrupt_install(macplib_dev->irqnum, h3_macplib_interrupt,(void *)macplib_dev, macplib_dev->name);/* Device is ready to work after final initialization */macplib_dev->mac_ops->macdev_init(&macplib_dev->mac_dev,(void *)macplib_dev->regs);/* Register frame RX callback function to notify Ethernet driver */macplib_dev->mac_ops->macdev_register(&macplib_dev->mac_dev,MAC_ASYNC_RECEIVE_CB,h3_macplib_rxcallback);/* set MAC hardware address */memcpy(filter.mac, macplib_dev->mac_addr, 6);filter.tid_enable = false;macplib_dev->mac_ops->macdev_filter(&macplib_dev->mac_dev, 0, &filter);/* Enable GMAC device */macplib_dev->mac_ops->macdev_enable(&macplib_dev->mac_dev);/* The last should enable GMAC interrupt handler */rt_hw_interrupt_umask(macplib_dev->irqnum);return RT_EOK;
}

MAC驱动下MDIO访问接口的实现

在定义MAC驱动操作接口的抽象时,就有定义PHY的寄存器读写接口,而MDIO操作PHY寄存器时就需要用到MAC操作接口所提供的PHY读写接口:

/* RT-Thread MDIO bus operation */
static struct rt_mdio_bus_ops h3_mdiobus_ops =
{.init   = h3_mdioplib_init,.read   = h3_mdioplib_read,.write  = h3_mdioplib_write,.uninit = RT_NULL,
};

MDIO操作接口读取接口的代码实现:

static rt_size_t h3_mdioplib_read(void *bus, rt_uint32_t addr,rt_uint32_t reg, void *data, rt_uint32_t size)
{rt_uint16_t val;rt_uint32_t *data_ptr = (rt_uint32_t *)data;struct h3_macplib_dev *macplib_dev;struct rt_mdio_bus    *mdioplib_bus = (struct rt_mdio_bus *)bus;RT_ASSERT(data != NULL);RT_ASSERT(bus  != NULL);if (4 != size) {return 0;}macplib_dev = (struct h3_macplib_dev *)mdioplib_bus->hw_obj;macplib_dev->mac_ops->macdev_readphy(&macplib_dev->mac_dev,(rt_uint16_t)addr, (rt_uint16_t)reg,&val);/* Get data from MII register. */*data_ptr = (rt_uint32_t)val;return 4;
}

那到这里的话,整个MAC驱动中最重要的部分已经完成,接下来将介绍PHY驱动代码的实现。

  • MAC驱动需要支持不同的PHY芯片

MAC驱动支持不同的PHY芯片

对PHY设备的抽象

需要对PHY设备做出抽象,不同的MPU产品中会存在MAC接口外接不同的PHY芯片,那在我们系统中每个PHY芯片就会有对应数量的PHY设备实例:

struct h3_kszplib_dev
{const char    *name;uint32_t       phy_addr;struct rt_phy_device rt_phydev;
} ;

RT-Thread下对PHY设备的操作接口做出抽象,在编写MAC驱动的时候,也需要完成对PHY设备操作接口的实现:

struct rt_phy_ops
{rt_phy_status (*init)(void *object, rt_uint32_t phy_addr, rt_uint32_t src_clock_hz);rt_phy_status (*read)(rt_uint32_t reg, rt_uint32_t *data);rt_phy_status (*write)(rt_uint32_t reg, rt_uint32_t data);rt_phy_status (*loopback)(rt_uint32_t mode, rt_uint32_t speed, rt_bool_t enable);rt_phy_status (*get_link_status)(rt_bool_t *status);rt_phy_status (*get_link_speed_duplex)(rt_uint32_t *speed, rt_uint32_t *duplex);
};

RT-Thread下定义的PHY操作抽象接口并不是很合理,比如你的系统里面有2个PHY的时候,你需要对每个PHY的操作接口做独立的实现,否则你无法根据当前read操作所传入的参数来区分当前操作的是哪个PHY设备。

如果你对上述说法不是很理解,参考下前面的h3_macplib_initial()函数,可以通过函数传入的参数dev,去获取到当前ethernet device对应的具体以太网设备实例包含的私有信息,根据这个信息用户驱动可以访问到自己定义的数据结构、操作接口等。

这篇关于在RT-Thread下为MPU手搓以太网MAC驱动-2的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1002058

相关文章

Mac excel 同时冻结首行和首列

1. 选择B2窗格 2. 选择视图 3. 选择冻结窗格 最后首行和首列的分割线加粗了就表示成功了

Linux和Mac分卷压缩

使用 zip 命令压缩文件 使用 zip 命令压缩文件,并结合 split 命令来分卷: zip - largefile | split -b 500k 举例: zip - ./tomcat.dmg |split -b 500k 上述命令将文件 largefile 压缩成 zip 包并分卷成不超过 500k 的文件,分解后文件名默认是 x* ,后缀为 2 位a-z 字母,如 aa、ab。

WDF驱动开发-WDF总线枚举(一)

支持在总线驱动程序中进行 PnP 和电源管理 某些设备永久插入系统,而其他设备可以在系统运行时插入和拔出电源。 总线驱动 必须识别并报告连接到其总线的设备,并且他们必须发现并报告系统中设备的到达和离开情况。 总线驱动程序标识和报告的设备称为总线的 子设备。 标识和报告子设备的过程称为 总线枚举。 在总线枚举期间,总线驱动程序会为其子 设备创建设备对象 。  总线驱动程序本质上是同时处理总线枚

【计算机网络篇】数据链路层(12)交换机式以太网___以太网交换机

文章目录 🍔交换式以太网🛸以太网交换机 🍔交换式以太网 仅使用交换机(不使用集线器)的以太网就是交换式以太网 🛸以太网交换机 以太网交换机本质上就是一个多接口的网桥: 交换机的每个接口考研连接计算机,也可以理解集线器或另一个交换机 当交换机的接口与计算机或交换机连接时,可以工作在全双工方式,并能在自身内部同时连通多对接口,使每一对相互通信的计算机都能像

WDF驱动开发-特定于KMDF的技术(一)

这部分的技术是一些零散的记录知识点,它们主要是在WDF框架中特定于KMDF的部分。 将内核模式驱动程序框架和非 PnP 驱动程序配合使用 如果要为不支持 即插即用 (PnP) 的设备编写驱动程序,则驱动程序必须: 在 WDF_DRIVER_CONFIG 结构的 DriverInitFlags 成员中设置 WdfDriverInitNonPnpDriver 标志;提供 EvtDriverUnl

jmeter之Thread Group(线程组)

Thread Group(线程组) 1.线程组,或者可以叫用户组,进行性能测试时的用户资源池。 2.是任何一个测试计划执行的开始点。 3.上一篇提到的“控制器”和“HTTP请求”(采集器)必须在线程组内;监听器等其他组件,可以直接放在测试计划下。 线程组设置参数的意义 我们以下图为例,进行详细说明。见下图:  区域1(在取样器错误后要执行的动作) 这个区域的主要作用很明显,在线程内

ADD属性驱动架构设计(一)

目录 一、架构设计过程 1.1、架构设计过程 1.1.1、设计目的 1.1.2、质量属性(非功能需求) 1.1.3、核心功能(功能需求) 1.1.4、架构关注 1.1.5、约束条件 1.2、基于设计过程 二、什么是ADD? 三、为什么选择ADD? 四、作用 五、ADD实现步骤 5.1、架构设计目标 5.1.1、系统类型确定  5.1.2、系统阶段确定 5.2、建

Exception processing async thread queue Exception processing async thread queue

错误信息描述: eclipse 在debug中弹出异常信息框 Exception processing async thread queue Exception processing async thread queue 解决方法: eclipse 中有一个Expressions窗口,里面添加的 expression 没有正确执行,并且没有删除,只要 Remove All Expressio

理解什么是DSR,嗅探器视角下的IP和MAC地址识别(C/C++代码实现)

网络嗅探器是监控和分析网络流量的一种工具,它能够捕获数据包并提取出关键的信息,比如IP地址和MAC地址。 网络嗅探器工作原理基于网卡的工作模式。正常情况下,网卡只处理发送给它的数据包,忽略其他数据。但是,如果将网卡设置为“混杂模式”,那么它可以接收到网络上所有的数据包,而不仅仅是发给它的数据包。网络嗅探器就是利用了这一特性来捕获网络上的数据交换。 数据包是网络通信的基本单位,包含了传输数据和控