C++通过读取二进制流的方式来解析PE(静态文件读取法)

2024-05-25 15:36

本文主要是介绍C++通过读取二进制流的方式来解析PE(静态文件读取法),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

步骤解读

  1. 先选择文件
  2. 读取文件二进制流
  3. 从二进制流读取DOS头(DOS_HEADER),长度64字节
  4. 读取DOS壳(DOS_STUB),DOS头开始,长度至到dosHeader->e_lfanew偏移量
  5. 读取PE标识(Signature),e_lfanew偏移量开始,长度4字节
  6. 读取PE文件头(FILE_HEADER),PE标识开始,长度20字节
  7. 读取PE可选头(OPTIONAL_HEADER),PE文件头开始,长度peHeader->sizeOfOptionalHeader

直接上代码

代码中只解析了重要信息

#include<iostream>
#include<windows.h>using namespace std;BOOL selectFile(char* filePath) {OPENFILENAMEA ofn;char filename[MAX_PATH];ZeroMemory(&ofn, sizeof(ofn));ofn.lStructSize = sizeof(ofn);ofn.hwndOwner = NULL;ofn.lpstrFilter = "ALL Files\0*.*\0";ofn.lpstrFile = filename;ofn.nMaxFile = sizeof(filename);ofn.Flags = OFN_PATHMUSTEXIST | OFN_FILEMUSTEXIST;ofn.lpstrFile[0] = '\0';if (GetOpenFileNameA(&ofn) == TRUE) {//MessageBoxA(NULL, filename, "提示", MB_OK);strcpy_s(filePath,MAX_PATH,filename);return TRUE;}return FALSE;
}int main() {char filePath[MAX_PATH];if (selectFile(filePath)) {//打开文件HANDLE hfile = CreateFileA(filePath, GENERIC_READ, FILE_SHARE_READ, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, 0);//根据文件句柄获取文件大小DWORD fileSize = GetFileSize(hfile,NULL);//文件流缓冲区char* fileBuffer = new char[fileSize];//实际接收字节数DWORD realRead = 0;//读取文件if (ReadFile(hfile, fileBuffer, fileSize, &realRead, NULL)) {WORD e_magic = *(WORD*)fileBuffer;	//MZ标识DWORD e_lfanew = *(DWORD*)(fileBuffer + 60);	//NT头偏移量printf("e_magic:%04X\n", e_magic);printf("e_lfanew:%08X\n", e_lfanew);printf("\n");DWORD Signatrue = *(DWORD*)(fileBuffer + e_lfanew);	//PE标识printf("Siganture:%08X\n", Signatrue);printf("\n");WORD Machine = *(WORD*)(fileBuffer + e_lfanew + 0x04);	//运行平台WORD NumberOfSections = *(WORD*)(fileBuffer + e_lfanew + 0x06);	//区段数量DWORD TimeDateStamp = *(DWORD*)(fileBuffer + e_lfanew + 0x08);	//区段数量WORD SizeOfOptionHeader = *(WORD*)(fileBuffer + e_lfanew + 0x14);	//可选头大小WORD Characteristics = *(WORD*)(fileBuffer + e_lfanew + 0x16);	//特征printf("Machine:%04X\n", Machine);printf("NumberOfSections:%04X\n", NumberOfSections);printf("TimeDateStamp:%04X\n", TimeDateStamp);printf("SizeOfOptionHeader:%04X\n", SizeOfOptionHeader);printf("Characteristics.EXECUTABLE_IMAGE:%d\n", Characteristics & IMAGE_FILE_EXECUTABLE_IMAGE);	//是否是可执行文件printf("Characteristics.IMAGE_FILE_LINE_NUMS_STRIPPED:%d\n", Characteristics & IMAGE_FILE_LINE_NUMS_STRIPPED);	//文件中不包含行号信息。printf("Characteristics.IMAGE_FILE_LOCAL_SYMS_STRIPPED:%d\n", Characteristics & IMAGE_FILE_LOCAL_SYMS_STRIPPED);	//文件中不包含局部符号。printf("Characteristics.IMAGE_FILE_32BIT_MACHINE:%d\n", Characteristics & IMAGE_FILE_32BIT_MACHINE);	//目标平台是32位。printf("Characteristics.IMAGE_FILE_DEBUG_STRIPPED:%d\n", Characteristics & IMAGE_FILE_DEBUG_STRIPPED);	//调试信息被移除。printf("Characteristics.IMAGE_FILE_SYSTEM:%d\n", Characteristics & IMAGE_FILE_SYSTEM);	//文件是系统文件。printf("Characteristics.IMAGE_FILE_DLL:%d\n", Characteristics & IMAGE_FILE_DLL);	//文件是dll文件。printf("\n");WORD Magic = *(WORD*)(fileBuffer  + e_lfanew + 0x18);	//0x10B是32位,0x20B是64位DWORD AddressOfEntryPoint = *(DWORD*)(fileBuffer + e_lfanew + 0x28);	//OEP程序入口偏移量DWORD ImageBase = *(DWORD*)(fileBuffer + e_lfanew + 0x34);	//程序入口,固定值+偏移量DWORD SectionAlignment = *(DWORD*)(fileBuffer + e_lfanew + 0x38);	//内存对齐大小DWORD FileAlignment = *(DWORD*)(fileBuffer + e_lfanew + 0x3C);	//文件对齐大小DWORD SizeOfIamge = *(DWORD*)(fileBuffer + e_lfanew + 0x50);	//文件在内存中的大小,按SectionAlignment对齐后的大小DWORD SizeOfHeaders = *(DWORD*)(fileBuffer + e_lfanew + 0x54);	//DOS,NT,PE,可选PE+区段 各种头加一块,按照FileAlignment对齐后的大小DWORD NumberOfRvaAndSizes = *(DWORD*)(fileBuffer + e_lfanew + 0x74);	//数据目录表的个数printf("Magic:%04X\n", Magic);printf("AddressOfEntryPoint:%08X\n", AddressOfEntryPoint);printf("ImageBase:%08X\n", ImageBase);printf("SectionAlignment:%08X\n", SectionAlignment);printf("FileAlignment:%08X\n", FileAlignment);printf("SizeOfIamge:%08X\n", SizeOfIamge);printf("SizeOfHeaders:%08X\n", SizeOfHeaders);printf("NumberOfRvaAndSizes:%08X\n", NumberOfRvaAndSizes);CloseHandle(hfile);}else {int errcode = GetLastError();cout << "文件读取失败:"<< errcode << endl;}}else {cout << "文件选择失败。" << endl;}
}

这篇关于C++通过读取二进制流的方式来解析PE(静态文件读取法)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1001911

相关文章

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

Springboot @Autowired和@Resource的区别解析

《Springboot@Autowired和@Resource的区别解析》@Resource是JDK提供的注解,只是Spring在实现上提供了这个注解的功能支持,本文给大家介绍Springboot@... 目录【一】定义【1】@Autowired【2】@Resource【二】区别【1】包含的属性不同【2】@

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Java并发编程必备之Synchronized关键字深入解析

《Java并发编程必备之Synchronized关键字深入解析》本文我们深入探索了Java中的Synchronized关键字,包括其互斥性和可重入性的特性,文章详细介绍了Synchronized的三种... 目录一、前言二、Synchronized关键字2.1 Synchronized的特性1. 互斥2.

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定

Springboot处理跨域的实现方式(附Demo)

《Springboot处理跨域的实现方式(附Demo)》:本文主要介绍Springboot处理跨域的实现方式(附Demo),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录Springboot处理跨域的方式1. 基本知识2. @CrossOrigin3. 全局跨域设置4.

springboot security使用jwt认证方式

《springbootsecurity使用jwt认证方式》:本文主要介绍springbootsecurity使用jwt认证方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录前言代码示例依赖定义mapper定义用户信息的实体beansecurity相关的类提供登录接口测试提供一

springboot security之前后端分离配置方式

《springbootsecurity之前后端分离配置方式》:本文主要介绍springbootsecurity之前后端分离配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的... 目录前言自定义配置认证失败自定义处理登录相关接口匿名访问前置文章总结前言spring boot secu

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI