STM32F1之SPI通信·软件SPI代码编写

2024-05-25 07:52

本文主要是介绍STM32F1之SPI通信·软件SPI代码编写,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1.  简介

2.  硬件电路

移位示意图

3.  SPI时序基本单元

3.1  起始条件

3.2  终止条件

3.3  交换一个字节(模式0)

3.4  交换一个字节(模式1)

3.5  交换一个字节(模式2)

3.6  交换一个字节(模式3)

4.  代码编写

4.1  引脚初始化

4.2  引脚置高低电平封装

4.2.1  SPI写SS引脚电平

4.2.2  SPI写SCK引脚电平

4.2.3  SPI写MOSI引脚电平

4.2.4  I2C读MISO引脚电平

4.3  SPI起始

4.4  SPI终止

4.5  SPI交换传输一个字节

4.5.1  模式0

4.5.2  模式1

4.5.2  模式2

4.5.2  模式3


1.  简介

        SPI(Serial Peripheral Interface)是由Motorola公司开发的一种通用数据总线。同步,全双工。支持总线挂载多设备(一主多从)。

四根通信线:SCK(Serial Clock)串行时钟线;

                      MOSI(Master Output Slave Input)主机输出从机输入;

                      MISO(Master Input Slave Output)主机输入从机输出;

                      SS(Slave Select)从机选择(若是有多个从机,有几个从机就有几条SS线,可见硬件电路中的连接图)。

2.  硬件电路

        所有SPI设备的SCK、MOSI、MISO分别连在一起;

        主机另外引出多条SS控制线,分别接到各从机的SS引脚;

        输出引脚配置为推挽输出,输入引脚配置为浮空或上拉输入。

移位示意图

        工作原理,假如主机想要发送一个字节给从机,从机也想发送一个字节给主机,开始,当SCK处于上升沿移位寄存器最左边数据移出,例如SPI主机中移位寄存器最左边“1”,移出到MOSI引脚上,而SPI从机的移位寄存器的最左边的数据“0”,移出到MISO引脚上,当SCK处于下降沿,MOSI上的数据进入到SPI从机的移位寄存器最右边,MISO上的数据进入到SPI主机的移位寄存器最右边。往复八次经过时钟的上升沿和下降沿,即可完成相互发送一个字节数据。

         当多个从机输出连在一起,如果同时开启输出,会造成冲突,解决方法是,当SS未被选中的状态,从机的MISO引脚必须关断输出,即配置为高阻态。

3.  SPI时序基本单元

3.1  起始条件

        SS从高电平切换到低电平

3.2  终止条件

        SS从低电平切换到高电平

3.3  交换一个字节(模式0)

        CPOL=0:空闲状态时,SCK为低电平

        CPHA=0:SCK第一个边沿移入数据,第二个边沿移出数据

3.4  交换一个字节(模式1)

        CPOL=0:空闲状态时,SCK为低电平

        CPHA=1:SCK第一个边沿移出数据,第二个边沿移入数据

3.5  交换一个字节(模式2)

        CPOL=1:空闲状态时,SCK为高电平

        CPHA=0:SCK第一个边沿移入数据,第二个边沿移出数据

3.6  交换一个字节(模式3)

        CPOL=1:空闲状态时,SCK为高电平

        CPHA=1:SCK第一个边沿移出数据,第二个边沿移入数据

4.  代码编写

4.1  引脚初始化

void MySPI_Init(void)
{/*开启时钟*/RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);	//开启GPIOA的时钟/*GPIO初始化*/GPIO_InitTypeDef GPIO_InitStructure;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4 | GPIO_Pin_5 | GPIO_Pin_7;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure);					//将PA4、PA5和PA7引脚初始化为推挽输出GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure);					//将PA6引脚初始化为上拉输入/*设置默认电平*/MySPI_W_SS(1);											//SS默认高电平MySPI_W_SCK(0);											//SCK默认低电平
}

其中,MySPI_W_SS(1); 和 MySPI_W_SCK(0);为封装函数,可以参照下一条。                           

4.2  引脚置高低电平封装

        为了后续代码的编写方便,我们可以将,初始化的引脚进行封装。

4.2.1  SPI写SS引脚电平

        此函数需要用户实现内容,当BitValue为0时,需要置SS为低电平,当BitValue为1时,需要置SS为高电平。

void MySPI_W_SS(uint8_t BitValue)
{GPIO_WriteBit(GPIOA, GPIO_Pin_4, (BitAction)BitValue);		//根据BitValue,设置SS引脚的电平
}
4.2.2  SPI写SCK引脚电平

        此函数需要用户实现内容,当BitValue为0时,需要置SCK为低电平,当BitValue为1时,需要置SCK为高电平。

void MySPI_W_SCK(uint8_t BitValue)
{GPIO_WriteBit(GPIOA, GPIO_Pin_5, (BitAction)BitValue);		//根据BitValue,设置SCK引脚的电平
}
4.2.3  SPI写MOSI引脚电平

        此函数需要用户实现内容,当BitValue为0时,需要置MOSI为低电平,当BitValue非0时,需要置MOSI为高电平。

void MySPI_W_MOSI(uint8_t BitValue)
{GPIO_WriteBit(GPIOA, GPIO_Pin_7, (BitAction)BitValue);		//根据BitValue,设置MOSI引脚的电平,BitValue要实现非0即1的特性
}
4.2.4  I2C读MISO引脚电平

        此函数需要用户实现内容,当前MISO为低电平时,返回0,当前MISO为高电平时,返回1。

uint8_t MySPI_R_MISO(void)
{return GPIO_ReadInputDataBit(GPIOA, GPIO_Pin_6);			//读取MISO电平并返回
}

也可以参考:

STM32F1之I2C通信·软件I2C代码编写-CSDN博客

进行其他方法也能实现同样功能。

4.3  SPI起始

        根据3.1我们可以看出SPI起始只需要将SS拉低就可以开始时序。

void MySPI_Start(void)
{MySPI_W_SS(0);				//拉低SS,开始时序
}

4.4  SPI终止

        同理,根据3.2我们可以看出SPI起始只需要将SS拉高就可以结束时序。

void MySPI_Stop(void)
{MySPI_W_SS(1);				//拉高SS,终止时序
}

4.5  SPI交换传输一个字节

4.5.1  模式0

        这里需要注意一下,在SPI中对于硬件SPI来说,由于使用了硬件的移位寄存器电路,所以下图中黄色部分几乎是同时发生的,但是对于软件SPI来说程序执行需要一条一条执行,有一个先后顺序,因此我们可以将这里看成一个先后执行的逻辑:

         因此我们可以将其传送一位数据的流程如下,先SS下降,再移出数据,在SCK上升沿,在移入数据,在SCK下降沿,再移出数据。

uint8_t MySPI_SwapByte(uint8_t ByteSend)
{uint8_t ByteReceive = 0x00;					//定义接收的数据,并赋初值0x00,此处必须赋初值0x00,后面会用到MySPI_W_MOSI(ByteSend & 0x80);		//使用掩码的方式取出ByteSend的指定一位数据并写入到MOSI线MySPI_W_SCK(1);								//拉高SCK,上升沿移出数据if (MySPI_R_MISO() == 1){ByteReceive |= 0x80;}	//读取MISO数据,并存储到Byte变量//当MISO为1时,置变量指定位为1,当MISO为0时,不做处理,指定位为默认的初值0MySPI_W_SCK(0);								//拉低SCK,下降沿移入数据MySPI_W_MOSI(ByteSend & 0x40);		//使用掩码的方式取出ByteSend的指定一位数据并写入到MOSI线MySPI_W_SCK(1);								//拉高SCK,上升沿移出数据if (MySPI_R_MISO() == 1){ByteReceive |= 0x40;}	//读取MISO数据,并存储到Byte变量//当MISO为1时,置变量指定位为1,当MISO为0时,不做处理,指定位为默认的初值0MySPI_W_SCK(0);	MySPI_W_MOSI(ByteSend & 0x20);		//使用掩码的方式取出ByteSend的指定一位数据并写入到MOSI线MySPI_W_SCK(1);								//拉高SCK,上升沿移出数据if (MySPI_R_MISO() == 1){ByteReceive |= 0x20;}	//读取MISO数据,并存储到Byte变量//当MISO为1时,置变量指定位为1,当MISO为0时,不做处理,指定位为默认的初值0MySPI_W_SCK(0);	MySPI_W_MOSI(ByteSend & 0x10);		//使用掩码的方式取出ByteSend的指定一位数据并写入到MOSI线MySPI_W_SCK(1);								//拉高SCK,上升沿移出数据if (MySPI_R_MISO() == 1){ByteReceive |= 0x10;}	//读取MISO数据,并存储到Byte变量//当MISO为1时,置变量指定位为1,当MISO为0时,不做处理,指定位为默认的初值0MySPI_W_SCK(0);	MySPI_W_MOSI(ByteSend & 0x08);		//使用掩码的方式取出ByteSend的指定一位数据并写入到MOSI线MySPI_W_SCK(1);								//拉高SCK,上升沿移出数据if (MySPI_R_MISO() == 1){ByteReceive |= 0x08;}	//读取MISO数据,并存储到Byte变量//当MISO为1时,置变量指定位为1,当MISO为0时,不做处理,指定位为默认的初值0MySPI_W_SCK(0);	//......一直移出到第八位return ByteReceive;								//返回接收到的一个字节数据
}

         以上代码太过冗余,我们可以使用for循环来进行实现:

uint8_t MySPI_SwapByte(uint8_t ByteSend)
{uint8_t i, ByteReceive = 0x00;					//定义接收的数据,并赋初值0x00,此处必须赋初值0x00,后面会用到for (i = 0; i < 8; i ++)						//循环8次,依次交换每一位数据{MySPI_W_MOSI(ByteSend & (0x80 >> i));		//使用掩码的方式取出ByteSend的指定一位数据并写入到MOSI线MySPI_W_SCK(1);								//拉高SCK,上升沿移出数据if (MySPI_R_MISO() == 1){ByteReceive |= (0x80 >> i);}	//读取MISO数据,并存储到Byte变量//当MISO为1时,置变量指定位为1,当MISO为0时,不做处理,指定位为默认的初值0MySPI_W_SCK(0);								//拉低SCK,下降沿移入数据}return ByteReceive;								//返回接收到的一个字节数据
}

        我们还可以根据“2.硬件电路”中的移位示意图中的数据进行操作,编写代码:

uint8_t MySPI_SwapByte(uint8_t ByteSend)
{uint8_t i;					for (i = 0; i < 8; i ++)						//循环8次,依次交换每一位数据{MySPI_W_MOSI(ByteSend & 0x80);ByteSend <<=1;MySPI_W_SCK(1);								//拉高SCK,上升沿移出数据if (MySPI_R_MISO() == 1){ByteReceive |= 0x01;}MySPI_W_SCK(0);								//拉低SCK,下降沿移入数据}return ByteReceive;								//返回接收到的一个字节数据
}

        这种方式相较于上一种代码效率更高,但是原始数据ByteSend会发生改变,因为这种方法是用移位数据本身进行操作的,效率跟高,但是原始数据ByteSend会在移位过程中发生改变,对于上一种方式编写的代码是还有掩码一次提取数据每一位,不会改变参数本身,两种方法皆可使用。

4.5.2  模式1

         我们也可以将其传送一位数据的流程描述如下,先SS下降之后,在SCK上升沿,再移出数据,在SCK下降沿,在移入数据。

uint8_t MySPI_SwapByte(uint8_t ByteSend)
{uint8_t i, ByteReceive = 0x00;					//定义接收的数据,并赋初值0x00,此处必须赋初值0x00,后面会用到for (i = 0; i < 8; i ++)						//循环8次,依次交换每一位数据{MySPI_W_SCK(1);								MySPI_W_MOSI(ByteSend & (0x80 >> i));		//使用掩码的方式取出ByteSend的指定一位数据并写入到MOSI线MySPI_W_SCK(0);								if (MySPI_R_MISO() == 1){ByteReceive |= (0x80 >> i);}	//读取MISO数据,并存储到Byte变量//当MISO为1时,置变量指定位为1,当MISO为0时,不做处理,指定位为默认的初值0}return ByteReceive;								//返回接收到的一个字节数据
}
4.5.2  模式2

        可以对比模式0,可以发现只是SCK极性相反,只需要将模式0的代码中出现SCK的地方“1”改为“0”,“0”改为“1”即可,将极性翻转一下。(注意初始化中的极性也要进行修改)

4.5.2  模式3

        同理,可以对比模式1,可以发现只是SCK极性相反,只需要将模式0的代码中出现SCK的地方“1”改为“0”,“0”改为“1”即可,将极性翻转一下。(注意初始化中的极性也要进行修改)

这篇关于STM32F1之SPI通信·软件SPI代码编写的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1000914

相关文章

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

使用Spring Cache本地缓存示例代码

《使用SpringCache本地缓存示例代码》缓存是提高应用程序性能的重要手段,通过将频繁访问的数据存储在内存中,可以减少数据库访问次数,从而加速数据读取,:本文主要介绍使用SpringCac... 目录一、Spring Cache简介核心特点:二、基础配置1. 添加依赖2. 启用缓存3. 缓存配置方案方案

MySQL的配置文件详解及实例代码

《MySQL的配置文件详解及实例代码》MySQL的配置文件是服务器运行的重要组成部分,用于设置服务器操作的各种参数,下面:本文主要介绍MySQL配置文件的相关资料,文中通过代码介绍的非常详细,需要... 目录前言一、配置文件结构1.[mysqld]2.[client]3.[mysql]4.[mysqldum

Python多线程实现大文件快速下载的代码实现

《Python多线程实现大文件快速下载的代码实现》在互联网时代,文件下载是日常操作之一,尤其是大文件,然而,网络条件不稳定或带宽有限时,下载速度会变得很慢,本文将介绍如何使用Python实现多线程下载... 目录引言一、多线程下载原理二、python实现多线程下载代码说明:三、实战案例四、注意事项五、总结引

IDEA与MyEclipse代码量统计方式

《IDEA与MyEclipse代码量统计方式》文章介绍在项目中不安装第三方工具统计代码行数的方法,分别说明MyEclipse通过正则搜索(排除空行和注释)及IDEA使用Statistic插件或调整搜索... 目录项目场景MyEclipse代码量统计IDEA代码量统计总结项目场景在项目中,有时候我们需要统计